一、积分的概念总结
【思考】:
-
什么情况下原函数存在?
原函数存在定理。 -
什么情况下可积?
可积的充分条件。 -
原函数存在与可积有什么关系?
原函数存在不一定可积,可积不一定原函数存在(当且仅当 f(x) 连续时,原函数存在与可积可以互推)。 -
∫0x f(t) dt 一定是 f(x) 的一个原函数吗?
不是,原函数一定可导,但是 ∫0x f(t) dt 不一定可导(若 f(x) 有有限个跳跃间断点,则其变上限积分不可导)。 -
(∫0x f(t) dt)’ = f(x) 吗?
不是,若 f(x) 有有限个跳跃间断点,那么它可积(∫0x f(t) dt 存在),但是其变上限积分不可导((∫0x f(t) dt)’ 不存在)。
【注】:若 f(x) 存在原函数,则称 F(x) = ∫0x f(t) dt 为 f(x) 的原函数;
若 f(x) 不存在原函数但可积,则称 F(x) = ∫0x f(t) dt 为 f(x) 的变上限积分。
1. 原函数存在与可积
1)原函数存在(不定积分)
① 定义:设 f(x) 在某区间 I 上,若存在可导函数 F(x) ,对于该区间上任意一点,都有 F’(x) = f(x) 成立,则称 F(x) 是 f(x) 在区间 I 上的一个原函数。(原函数一定要可导)
【注】:
-
若 f(x) 连续,那么 F(x) = ∫0x f(t) dt 为 f(x) 的一个原函数。
-
若 f(x) 连续,那么 ∫ f(x) dx = ∫0x f(t) dt + C 。
② 原函数存在定理:
-
f(x) 连续 ⇒ 原函数存在。
设 f(x) 在区间 I 上连续,则 f(x) 在区间 I 上存在原函数。 -
f(x) 可去、跳跃、无穷 ⇒ 原函数不存在。
若 f(x) 在区间 I 上有第一类间断点(可去、跳跃)和无穷间断点,则 f(x) 在区间 I 上没有原函数。 -
f(x) 振荡 ⇒ 原函数可能存在。
若 f(x) 在区间 I 上有振荡间断点,在区间 I 上可能有原函数。
③ 不定积分的基本性质:
-
∫ dF’(x) = F’(x) + C
-
d[∫ f(x) dx] = f(x) dx
2)可积(定积分)
① 可积的充分条件(条件推结论)
-
连续可积。
设 f(x) 在 [a, b] 上连续,则 f(x) 可积,∫ab f(x) dx 存在。 -
单调有界可积。
设 f(x) 在 [a, b] 上单调有界,则 f(x) 可积,∫ab f(x) dx 存在。 -
有限个第一类间断点(可去、跳跃)可积。
设 f(x) 在 [a, b] 上只有有限个第一类间断点,则 f(x) 可积,∫ab f(x) dx 存在。 -
有界(排除无穷)+ 有限个间断点(可去、跳跃、振荡)可积。
设 f(x) 在 [a, b] 上有界,且只有有限个间断点,则 f(x) 可积,∫ab f(x) dx 存在。
② 可积的必要条件(结论推条件)
若 f(x) 在 [a, b] 上可积,则 f(x) 在 [a, b] 上有界。
若 f(x) 在 [a, b] 上无界,则 f(x) 在 [a, b] 上不可积。(逆否命题)
3)总结
连续 | 可去 | 跳跃 | 无穷 | 振荡 | |
---|---|---|---|---|---|
原函数存在 | √ | × | × | × | 可能 |
定积分存在 | √ | 有限 | 有限 | × | 有界+有限 |
变限积分可导性 | 可导 | 可导(极限) | 不可导 | / | / |
判断函数是否存在原函数、是否可积的步骤:
-
第一步:判断函数是否连续,若连续则一定存在原函数、一定可积。
-
第二步:若不连续,则判断间断点(可去、跳跃、振荡、无穷)的类型和个数。
【可去、跳跃、无穷间断点必不存在原函数,振荡间断点可能存在原函数,需要进一步利用极限来判断。】 -
第三步:判断函数是否有界。
【无穷间断点(无界)必不可积,若可去、跳跃间断点的个数有限则可积,若振荡间断点的个数有限且函数有界则可积。】
【注】:
-
f(x) 在区间内连续,既可推原函数存在,又可推可积。
-
可积不一定原函数存在,原函数存在不一定可积。
-
f(x) 在区间内连续是原函数存在与可积之间的 “桥梁” 。
2. 变上限积分
1)定理
若 f(x) 在 [a, b] 上连续,则变上限积分 ∫0x f(t) dt 在 [a, b] 上可导,且 (∫0x f(t) dt)’ = f(x) 。
2)连续性
若 f(x) 在 [a, b] 上可积(变上限积分存在),则变上限积分 ∫0x f(t) dt 在 [a, b] 上连续。
3)可导性
若 f(x) 在 [a, b] 上除点 x = x0 外均连续,则在点 x = x0 处变上限积分 ∫0x f(t) dt 可导。
【注】:
-
可积有变上限积分,但该变上限积分未必是原函数。
-
f(x) 可积 → ∫0x f(t) dt 连续;f(x) 连续 → ∫0x f(t) dt 可导。(可导 → 连续 → 可积)
-
f(x) 可去 → ∫0x f(t) dt 可导;f(x) 跳跃 → ∫0x f(t) dt 不可导。
3. 奇偶性、周期性
关注 ∫0x f(t) dt — f(x) — f’(x) 的关系。
1)f(x) 可导(f(x) → f’(x) ,f’(x) 连续)
-
若 f(x) 是可导的奇函数,则 f’(x) 是偶函数。
-
若 f(x) 是可导的偶函数,则 f’(x) 是奇函数。
-
若 f(x) 是可导的周期为 T 的周期函数,则 f’(x) 是周期为 T 的周期函数。
2)f(x) 可积(f(x) → ∫0x f(t) dt ,∫0x f(t) dt 连续)
【注】:可积不一定有原函数。
-
若 f(x) 是可积的奇函数,则 ∫0x f(t) dt 是偶函数且 ∫ax f(t) dt 是偶函数。
-
若 f(x) 是可积的偶函数,则 ∫0x f(t) dt 是奇函数。
而 ∫ax f(t) dt 看情况:【∫ax f(t) dt = ∫a0 f(t) dt + ∫0x f(t) dt 】
若 ∫a0 f(t) dt = 0 ,则是奇函数;若 ∫a0 f(t) dt ≠ 0 ,则是非奇非偶函数。 -
若 f(x) 是可积的周期为 T 的周期函数,若想 ∫0x f(t) dt 也是周期为 T 的周期函数,当且仅当 f(x) 在一个周期上积分为 0 ,即 ∫0T f(t) dt = 0 。
3)f(x) 连续
【注】:连续一定有原函数。
-
若 f(x) 是连续的奇函数,则全体原函数都是偶函数。
-
若 f(x) 是连续的偶函数,则只有一个原函数是奇函数。
【总结】:若 f(x) 连续
∫ax f(t) dt | f(x) | f’(x) |
---|---|---|
偶函数 | 奇函数 | 偶函数 |
仅 ∫0x f(t) dt 是奇函数 | 偶函数 | 奇函数 |
若 ∫0T f(t) dt = 0 ,则为周期函数 | 周期函数 | 周期函数 |
4)计算定积分的技巧
- 定积分的奇偶性:(偶倍奇零)
若 f(x) 为奇函数,则 ∫-aa f(x) dx = 0
若 f(x) 为偶函数,则 ∫-aa f(x) dx = 2·∫0a f(x) dx
【注】:对称区间下:∫-aa f(x) dx = ∫0a [f(x)+f(-x)] dx 。
-
定积分的周期性:
设 f(x) 是以 T 为周期的连续函数,a 为任意实数,则 ∫aa+T f(x) dx = ∫0T f(x) dx = ∫-T/2T/2 f(x) dx 。 -
∫0π/2 f(sinx) dx = ∫0π/2 f(cosx) dx【令 t = π/2 - x】
∫0π [x·f(sinx)] dx = (π/2)·∫0π f(sinx) dx【令 t = π - x】
要点在于:区间再现公式
4. 例题
二、积分的综合题
1. 变限积分求导
1)变限积分求导公式
(∫φ(x)ψ(x) f(t) dt)’ = f[ψ(x)] · ψ’(x) - f[φ(x)] · φ’(x)
【注】:若 ∫ax f(■) dt 的 ■ 中含有上限 x ,则需要先换元。
例如:∫12 f(x+t) dt ,令 u = x + t ,原式 = ∫x+1x+2 f(u) du ,进一步有:(∫12 f(x+t) dt)’ = (∫x+1x+2 f(u) du)’ = f(x+2) - f(x+1) 。
2)例题
2. 变限积分求极限
1)方法
洛必达法则、等价无穷小替换、积分中值定理等。(需要观察题目所给信息灵活配凑,必要时先进行换元)
2)易错点
-
题目若只给出 f(x) 连续,且当 x → 0 时求 lim (∫0x f(t) dt)/x2 ,利用洛必达法则可以得到 lim f(x)/(2x) ,但是不能继续使用洛必达法则!即不能出现 lim f’(x)/2 。
(因为题目只给出 f(x) 连续,f(x) 是否可导未知) -
题目若只给出 f(x) 可导,但未说明导函数在某点(例如 x = a)处连续,则不可以出现 limx→a f’(x) 。因为 limx→a f’(x) = f’(a) ,但 f’(x) 在 x = a 处是否连续未知。
-
∫0x (x-t)·f(t) dt = x·∫0x f(t) dt - ∫0x t·f(t) dt 。
无法继续使用洛必达法则时,可以利用积分中值定理进行处理。
【拓展】:
-
积分中值定理:若 f(x) 在 [a, b] 上连续,则 ∫ab f(x) dx = (b - a) · f(ξ) ,其中 a < ξ < b 。(去掉积分限的重要方法)
-
广义的积分中值定理:若 f(x) , g(x) 在 [a, b] 上连续,且 g(x) 不变号,则 ∫ab f(x) · g(x) dx = f(ξ) · ∫ab g(x) dx ,其中 a < ξ < b 。
3)例题
3. 变限积分求定积分
1)方法
-
分部积分(往后凑)
例如:∫ab x·f(x) dx = (1/2)·∫ab f(x) dx2 = (1/2)·[x2·f(x)|ab - ∫ab x2 df(x)] -
交换积分顺序
2)例题
4. 不定积分求原函数
求不定积分的原函数需要注意:原函数天然连续。
下面举一个例子:
三、定积分的定义
1. 定积分的几何意义
定积分的几何意义为:函数 f (x) 在区间 [a, b] 上的曲线下面积
limn→∞ (步长)·∑下限上限 f(■) = ∫区间长度最小值区间长度最大值 f(x) dx
-
通过 ∑ 的上下限计算出区间长度(将上下限分别带入 f(■) 中)和步数(上限减下限);
-
计算步长(步长 = 区间长度 / 步数)。
下面举几个例子:
2. 例题
四、定积分比大小
1. 积分区间相同(比较被积函数大小)
-
比较被积函数大小时,需要事先处理被比较的式子,使得它们的分子或分母有一个是相同的。
-
嵌套函数/复合函数:若嵌套单增函数,则不改变不等号的方向;若嵌套单减函数,则改变不等号的方向。
【例如】:在 0 < x < π/2 上有 x > sinx ,则必有 ln(x) > ln(sinx) 、ex > esinx 、cosx < cos(sinx) 等。 -
常考的不等式需要牢记。
(2/π)x < sinx < x < tanx(0 < x < π/2)
x/(1+x) < ln(1+x) < x(x > 0)
ex ≥ x + 1(当且仅当 x = 0 时取等号) -
除了利用常见的不等式,还可以构造新的函数,通过求导判断其单调性。
【例如】:ln(1+x) 与 (x/2) 在 [0, 1] 上谁大谁小?构造 F(x) = ln(1+x) - (x/2) ,有 F’(x) = 1/(1+x) - (1/2) ,在 [0, 1] 上 F’(x) ≥ 0 ,可得 F(x) 在区间内单调递增,F(x) > F(0) = 0 ,即 ln(1+x) > (x/2) 。 -
比较 cosx 与 sinx 时,可以画图判断,在 0 < x < π/2 上 sinx 单调递增、cosx 单调递减。
-
观察积分区间,若上下限互为相反数,考虑是否可以使用 “偶倍奇零” 。
若 f(x) 为偶函数,则 ∫-aa f(x) dx = 2·∫0a f(x) dx ;若 f(x) 为奇函数,则 ∫-aa f(x) dx = 0 。
例题:比较 I1 = ∫0π/2 sin(sinx) dx 、I2 = ∫0π/2 cos(sinx) dx 、I3 = 1 的大小。
答案:I2 > I3 > I1 。
【解析】:已知 ∫0π/2 sinx dx = ∫0π/2 cosx dx = 1 且在 [0, π/2] 上 x > sinx ,在 0 < x < π/2 上 sinx 单调递增、cosx 单调递减,因此有 sinx > sin(sinx) 、cosx < cos(sinx) 。
2. 被积函数相同(积分区间不同)
1)画图法(小题)
方法:在被积函数中找出在区间内“有正有负”的函数,并画出它的图像。
例如:比较 I1 = ∫0π ex·sinx dx 、I2 = ∫02π ex·sinx dx 、I3 = ∫03π ex·sinx dx 的大小时,由于在 [0, 3π] 内 ex 恒正,而 sinx 有正有负,因此画出 sinx 的图像(下图黑色部分)。
ex 恒正且在 [0, 3π] 内 ≥ 1 ,因此可以看作纵向拉高了图像,且 x 越大拉的越高,大概图像如上图灰色部分所示。可以看出 I1 > 0 ,I2 = I1 + ∫π2π ex·sinx dx < I1 ,I3 = I1 + I2 + ∫2π3π ex·sinx dx > I1 ,即 I3 > I1 > I2 。
2)拆分法(大题)
方法:
-
划分出正负区间并拆开;
-
换元,使拆开后的每个积分的积分区间一致(统一上下限);
-
提取公因式,比较大小。
例如:比较 I1 = ∫0π ex·sinx dx 、I2 = ∫02π ex·sinx dx 、I3 = ∫03π ex·sinx dx 的大小。
-
I1 中的被积函数在 [0, π] 内恒正,因此不用处理;
-
I2 = ∫0π ex·sinx dx + ∫π2π ex·sinx dx ,
换元:令 t = x - π ,有 ∫π2π ex·sinx dx = -∫0π et+π·sint dt ,
提取:I2 = ∫0π (ex - ex+π)·sinx dx < ∫0π ex·sinx dx = I1 ; -
I3 = ∫0π ex·sinx dx + ∫π2π ex·sinx dx + ∫2π3π ex·sinx dx ,
换元:令 t = x - 2π ,有 ∫2π3π ex·sinx dx = ∫0π et+2π·sint dt ,
提取:I3 = ∫0π ex·sinx dx - ∫0π ex+π·sinx dx + ∫0π et+2π·sint dt = ∫0π (ex - ex+π + et+2π)·sinx dx > ∫0π ex·sinx dx = I1 ;可得:I3 > I1 > I2 。
3)例题
① ∫02π esint·sint dt()0【>】
② ∫02π sint/√t dt()0【>】
③ 当 f’(x) < 0 时,∫-ππ f(x)·sinx dx()0【<】
④ 当 f”(x) > 0 时,∫-ππ f(x)·cosx dx()0【<】
第 ④ 题的解析:
五、反常积分判敛
1. 反常积分的概念
1)反常积分的定义
定积分:区间有限 + 函数有界。
反常积分:又叫广义积分,是对普通定积分的推广,指含有无穷上限 / 下限,或者被积函数含有瑕点的积分,前者称为无穷限广义积分(无穷区间上的反常积分),后者称为瑕积分(又称无界函数的反常积分)。
2)瑕点的定义
瑕点:如果函数 f(x) 在点 a 的任意一个去心邻域内无界,那么点 a 称为函数 f(x) 的瑕点(也称无界间断点),简单来说瑕点是指被积函数在邻域内无界的点。
反常积分积分限中间有瑕点一定要分开计算。若瑕点 c ∈ (a, b) 时:∫ab f(x) dx = ∫ac f(x) dx + ∫cb f(x) dx 。
【注】:∫ac f(x) dx 与 ∫cb f(x) dx 都收敛时 ∫ab f(x) dx 才收敛,但凡 ∫ac f(x) dx 与 ∫cb f(x) dx 其中有一个发散,∫ab f(x) dx 就发散。
2. p 积分必背结论
常见的四种模型:1/xp 、lnqx/xp 、1/(xp·lnqx) 、(lnx)q 。
3. 敛散性的判别方法(比较审敛法)
还可以直接利用反常积分定义计算来判别敛散性。
例如:∫0+∞ x·e-x dx = -∫0+∞ x d(e-x) = -x·e-x|0+∞ + ∫0+∞ e-x dx = -(x+1)·e-x|0+∞ = 1 ,因此收敛。
当反常积分不易计算时,可将被积函数等价成 1/xp 或 1/(x-a)p 的形式,利用比较审敛法(极限形式)的及 p 积分的性质进行判别。
【注】:比较审敛法有极限和不等式两种形式,一般极限形式更实用!
【极限法记忆】:若 limx→+∞ f(x) / 收敛 = 0 ,则 f(x) 收敛;若 limx→+∞ f(x) / 发散 = ∞ ,则 f(x) 发散。
1)无穷区间
-
无穷区间的反常积分比较审敛法(极限形式)
-
无穷区间的反常积分比较审敛法(不等式形式)
【总结】:
2)无界函数
-
无界函数的反常积分比较审敛法(极限形式)
-
无穷限的反常积分比较审敛法(不等式形式)
【总结】:
4. 含有对数函数的反常积分
【总结】:
-
当 x → +∞ 或 x → 0+ 时,lnx 在分子处(lnx/xp)可以不用看,即 lnx/xp 与 1/xp 同敛散。
-
使用等价无穷小替换:x → 0 时 ln(1+x) ~ x ;x → 1 时 lnx ~ x-1 。
-
当 a 为一个确切的值时,∫0a (lnx)k dx 一定收敛。
证明:为什么 ∫01 (lnx)100 dx 收敛?
已知 limx→0+ (lnx)100/x-1/2 = limx→0+ √x·(lnx)100 = 0 ,因为 ∫01 1/√x dx 收敛,可以得出 ∫01 (lnx)100 dx 收敛(“大收小收”)。
1)结论 1
2)结论 2
5. 含有指数函数的反常积分
6. 其他结论
绝对收敛的性质:设函数 f(x) 在 [a, +∞) 上连续,若 ∫a+∞ |f(x)| dx 收敛,则 ∫a+∞ f(x) dx 收敛。
六、反常积分计算
1. 反常积分的四则运算(加减法)
∫a+∞ [f(x)±g(x)] dx = ∫a+∞ f(x) dx ± ∫a+∞ g(x) dx
【注】:上式只有 ∫a+∞ f(x) dx 与 ∫a+∞ g(x) dx 都收敛时才可拆开计算。
【重点】:拆成两个反常积分时,要注意拆分后每个积分的敛散性。(只有都收敛才可以拆分!)
【方法】:若不可拆开计算时,可按整体求不定积分(g(x) = ∫ f(x) dx),再统一代值计算(∫a+∞ f(x) dx = limx→+∞ g(x) - limx→a+ g(x))。
2. 找瑕点拆区间
若瑕点位于区间端点,则求极限;若瑕点位于区间内部,则拆区间。
3. 分部积分法
使用分部积分时,要注意每个部分的敛散性。
需要注意 ln ,最后一步求极限时 ln 往往要合并。
4. 换元法
换元后,有时可将反常积分转化为定积分。
七、积分的几何应用
1. 平面曲线弧长
2. 求平面图形面积
1)直角坐标系
2)参数方程
【例题】:
-
① 求由平摆线的一拱与 x 轴所围平面图形的面积。(S = 3πa2)
平摆线:x = a·(t-sint) ;y = a·(1-cost)(a > 0) -
② 求星形线图形围成的面积。(S = (3/8)·πa2)
星形线:x = a·cos3t ;y = a·sin3t
3)极坐标系
【例题】:
-
① 求伯努利双扭线 r2 = a2·cos2θ 围成的图形面积。(S = a2)
-
② 求对数螺线 r = eθ(0 ≤ θ ≤ π)及射线 θ = 0 和 θ = π 所围成平面图形的面积。(S = (1/4)·(e2π-1))
3. 求旋转体体积
1)直角坐标系
【总结】:公式记忆
-
y = y(x) 绕 x 轴旋转:Vx = π·∫ab y2(x) dx
x = x(y) 绕 y 轴旋转:Vy = π·∫cd x2(y) dy -
y = y(x) 绕 y 轴旋转:Vy = 2π·∫ab x·y(x) dx
x = x(y) 绕 x 轴旋转:Vx = 2π·∫cd y·x(y) dy -
【通用】绕直线旋转:V = 2π·∫∫D r(x,y) dσ
其中 r(x,y) 为点 (x,y) 到直线 L 的距离,即 r(x,y) = |ax+by+c| / √(a2+b2)
2)参数方程
令 x = x(t) ,用 y(t) 代替 y ,用 x(t) 代替 x 。核心在于换元(换元有三换)。
【例题】:
-
① 求由平摆线与 x 轴所围平面图形分别绕 x 轴和 y 轴旋转一周所得旋转体的体积。
(Vx = 5·π2a3 、Vy = 6·π3a3)
平摆线:x = a·(t-sint) ;y = a·(1-cost)(a > 0) -
② 求星形线图形围成的区域绕 x 轴旋转一周所得旋转体的体积。(V = (32/105)·πa3)
星形线:x = a·cos3t ;y = a·sin3t
3)极坐标系
求旋转体体积有通用公式:V = 2π·∫∫D r(x,y) dσ 。
一般绕极轴旋转即是绕 x 轴旋转,因此公式变为 V = 2π·∫∫D y(x) dσ ,在极坐标中 x = r·cosθ 、y = r·sinθ ,可得 V = 2π·∫αβ sinθ dθ∫ab r·r dr 。
【例题】:
-
① 求对数螺线 r = eθ(0 ≤ θ ≤ π)及射线 θ = 0 和 θ = π 所围成平面图形绕极轴旋转一周所得旋转体的体积。(V = (π/15)·(e3π+1))
-
② 求心形线 r = 4·(1+cosθ) 与射线 θ = 0 和 θ = π/2 所围成平面图形绕极轴旋转一周所得旋转体的体积。(V = 160π)
4. 旋转体的侧面积
【总结】:
5. 质心形心公式
6. 其他技巧
1)常考图形
伯努利双扭线:① (x2+y2)2 = a2·(x2-y2) ;② (x2+y2)2 = 2a2·xy 。
2)古尔丁定理
八、积分等式和不等式
1. 积分的重要性质
- 比较定理:若 f(x) ≤ g(x) ,x ∈ [a, b] ,则 ∫ab f(x) dx ≤ ∫ab g(x) dx 。
定理核心:比较开区间内被积分函数间的大小(直接比、间接比)。
重点不等式:(1)ex - 1 ≥ x(当且仅当 x = 0 时取等号);
(2)ln(1 + x) ≤ x(当且仅当 x = 0 时取等号);
(3)tanx > x > sinx(0 < x < π/2);
(4)x > sinx(x > 0);
(5)1/(1+x) < ln[1+(1/x)] < 1/x(x > 0);
(6)x/(1+x) < ln(1+x) < x(x > 0)。
-
推论:|∫ab f(x) dx| ≤ ∫ab |f(x)| dx 。(还需要牢记不等式:|a ± b| ≤ |a| + |b|)
-
积分中值定理:设 f(x) 在 [a, b] 上连续,则至少存在一点 ξ ∈ (a, b),使得 ∫ab f(x) dx = (b - a) · f(ξ) 。
【注】:去掉积分限的重要方法。 -
广义的积分中值定理:若 f(x) 与 g(x) 在 [a, b] 上连续,且 g(x)不变号,则至少存在一点 ξ ∈ (a, b),使得 ∫ab f(x) · g(x) dx = f(ξ) · ∫ab g(x) dx 。
-
函数的平均值:称 ∫ab f(x) dx / (b-a) 为函数 f(x) 在区间 [a, b] 上的平均值。
-
若 f(x) 在区间 [a, b] 上连续,则 m(b-a) ≤ ∫ab f(x) dx ≤ M(b-a) ,其中 m, M 分别为 f(x) 在 [a, b] 上的最小值与最大值。
2. 放缩 / 夹逼准则
【方法步骤】:
第 0 步:利用积分中值定理或积分第一中值定理进行预处理;
(例如:limn→∞ ∫ab f(xn)·g(x) dx = g(ξn)·limn→∞ ∫ab f(xn) dx ,ξn ∈ [a, b])
第 1 步:对积分进行放缩(利用上下限、常见不等式、最值等);
(例如:∫ab φ(xn) dx ≤ ∫ab f(xn) dx ≤ ∫ab ψ(xn) dx)
第 2 步:构造不等式,并算出好积的积分;
(例如:limn→∞ ∫ab φ(xn) dx = limn→∞ ∫ab ψ(xn) dx = 0)
第 3 步:利用夹逼准则计算出难积的积分。
(例如:g(ξn)·limn→∞ ∫ab f(xn) dx = limn→∞ ∫ab f(xn)·g(x) dx = 0)
∫ab α(x) dx ≥ ∫ab β(x) dx ⇔ ∫ab [α(x)-β(x)] dx ≥ 0 。
1) 利用上下限放缩
【例题】:求极限 limn→∞ ∫01 xn·√(1+x2) dx 。
【解析】:
方法 1:通过放缩利用 “夹逼准则” 。
已知 0 ≤ x ≤ 1 ,可得 ∫01 xn dx ≤ ∫01 xn·√(1+x2) dx ≤ √2·∫01 xn dx 。又有:
(a)limn→∞ ∫01 xn dx = limn→∞ [xn+1/(n+1)]|01 = limn→∞ [1/(n+1)] = 0 ;
(b)limn→∞ √2·∫01 xn dx = √2·limn→∞ [xn+1/(n+1)]|01 = √2·limn→∞ [1/(n+1)] = 0 。
由夹逼准则可得 limn→∞ ∫01 xn·√(1+x2) dx = 0 。
方法 2:利用 “推广的积分中值定理” 。
∫01 xn·√(1+x2) dx = √(1+ξn2)·∫01 xn dx = √(1+ξn2)/(n+1) ,其中 0 ≤ ξn ≤ 1 ,
有:limn→∞ ∫01 xn·√(1+x2) dx = limn→∞ [√(1+ξn2)/(n+1)] dx = 0 。
【注】:由上述方法 2 得出以下结论
I、如果需要和积分中值定理相结合的话,往往利用积分中值定理把不带 n 的部分(例如上例中的 √(1+x2) )移到积分号外,把有 n 的部分(例如上例中的 xn )留在积分内,算出积分。
II、积分中值定理与 f(xn) 结合,需要注意此时的 ξ 范围依赖 n ,因此应该写成 ξn 。
2)利用经典不等式放缩
推广的积分中值定理 + 不等式放缩 + 夹逼准则。
常见的不等式放缩有:ex - 1 ≥ x 、ln(1 + x) ≤ x 等。
【例题】:
3)利用最值放缩
若 f(x) 在区间 [a, b] 上连续,则 m·(b-a) ≤ ∫ab f(x) dx ≤ M·(b-a) ,其中 m, M 分别为 f(x) 在 [a, b] 上的最小值与最大值。
【证明】:
已知 m ≤ f(x) ≤ M ,从而有 ∫ab m dx ≤ ∫ab f(x) dx ≤ ∫ab M dx ,即 m(b-a) ≤ ∫ab f(x) dx ≤ M(b-a) 。
3. 利用单调性
常数变量化构造辅助函数,再利用函数单调性。
在证明积分不等式中,一种常见的做法是将上限 b 改为 x(例如 ∫ab f(x) dx 改为 ∫ax f(t) dt),然后移项构造函数(F(x) = ■)并求导(F’(x) = ■),利用单调性(F’(x) 与 0 之间的关系)来证明不等式。
证明过程中,有时需要将 “函数转化为积分” 或者将 “积分转化为函数” 。
1)将积分转化为函数(积分中值定理)
∫ax f(t) dt = f(ξ)·(x-a) ,其中 a ≤ ξ ≤ x 。(利用积分中值定理消去 ∫ 符号)
例如:(x-a)·f(x) - ∫ax f(t) dt = (x-a)·f(x) - (x-a)·f(ξ) = (x-a)·[f(x) - f(ξ)] 。
2)将函数转化为积分
(x-a)·f(x) = ∫ax f(x) dt 。
例如:(x-a)·[f(x) - f(ξ)] = ∫ax f(x) dt - ∫ax f(t) dt = ∫ax [f(x)-f(t)] dt
4. maxa≤x≤b|f’(x)|
此类题目的常见做法是:用 “拉格朗日中值定理”(一阶导数)或 “泰勒公式”(二阶导数)。
如果题目简单,那么只需要运用一次 “拉格朗日中值定理” 即可;如果题目复杂,则需要运用两次 “拉格朗日中值定理”(问题的本质转化为分段点 / 拆区间,常见的分段点是区间中点)。
1)运用拉格朗日中值定理
如果函数 f(x) 在闭区间 [a, b] 上连续,在开区间 (a, b) 上可导,那么在开区间 (a, b) 内至少存在一点 ξ 使得 f’(ξ) = [f(b)-f(a)]/(b-a) 。
【必背】:|∫ab f(x) dx| ≤ ∫ab |f(x)| dx
① 运用一次 “拉格朗日中值定理”
② 运用两次 “拉格朗日中值定理”
-
分段点为 x :
-
分段点为区间中点 (a+b)/2 :
2)运用泰勒中值定理
对于积分不等式,泰勒中值定理有两种用法:
-
先消去积分符号后展开
令 F(x) = ∫ax f(t) dt ,将原条件和结论转换成关于 F(x) 的条件和结论!注意 F(x) = ∫ax f(t) dt 这个函数“天生”有个零点 x = a ! -
先展开后积分
例题:
① 设 f(x) 在 [0,a] 上具有二阶导数 (a > 0),且 f(x) > 0 , f”(x) > 0 ,证明:∫0a f(x) dx > a·f(a/2) 。
② 设 f(x) 在 [0,2] 上二阶导数连续,且 f(1) = 0 ,当 x ∈ [0,2] 时,记 M = max{|f”(x)|} ,证明:|∫02 f(x) dx| ≤ M/3 。
5. 其他技巧
两个定积分的乘积可以转化成二重积分
-
∫ab f(x) dx · ∫ab g(x) dx = ∫∫D f(x)·g(y) dxdy ,其中 D = {(x, y)|a ≤ x, y ≤ b}
-
(∫ab f(x) dx)2 = ∫∫D f(x)·f(y) dxdy ,其中 D = {(x, y)|a ≤ x, y ≤ b}
当转换成二重积分后,如果被积函数中的 x, y 不对称,往往需要利用下面公式变成对称的:
∫∫D f(x, y) dxdy = (1/2)·∫∫D [f(x, y)+f(y, x)] dxdy(其中积分区域 D 关于直线 x = y 对称)