1. 高数
导数、极限、连续的性质题(记住反例)
如何记忆:
- 极限就是逼近但取不到;
- 连续就是逼近和取到相等;
- 导数本质也是个函数,也以点或区间的形式考察其连续性
计算极限的顺序(常数因子能提的先提出来,然后才是洛必达或者等价无穷小)
复合函数微分性质(先求出复合函数的形式)
祖孙三代的奇偶性与周期性
曲率与曲率半径
不等式(——添项减项技巧+拉格朗日中值定理)
反常积分判敛
常用的比较判敛法,和广义p级数需要引起注意:
凹凸性的两种定义
中值定理常考题型

多元函数可微定义
二元函数的二阶泰勒多项式
非典型微分方程(换元先行)
再比如24年真题:
积分计算公式
一道求点的轨迹和极坐标球积分的好题
方向导数(公式法,可微是前提)
散度和旋度
轮换对称性
一道前n项和在级数判敛中发挥作用的题
常用的两个无穷级数求和公式
形心公式求第一型空间闭曲面积分
空间曲线的参数方程表示法
傅里叶级数
带抽象函数的曲线/曲面积分
一道高中题
2. 线代
综合考察A*、行列式、正交的一道好题
一道综合考察分块矩阵、负对称矩阵、值转秩等于自身、方程组解判定的好题
分块矩阵的处理
线性方程组的几何意义(扣住解的判定)
相似的性质(注意区分充分还是必要条件)
过渡矩阵和坐标变换
记忆:坐标变换C修饰的是变换之后的坐标y
伴随矩阵的性质
实对称矩阵的奇异值分解
知识点回顾:
3. 概率论
泊松近似
一元随机变量函数的分布
次序统计量的分布
切比雪夫不等式
- 记忆方法:想象两个不等号是眼睛,epsilon是嘟起来的嘴。
原假设与备择假设(假设检验的目的是为了否定原假设)
最大似然估计的不变性
中心极限定理
几何分布
知识点回顾:
多元随机变量函数的分布,连续+离散