-
准确率(Accuracy)
A c c u r a c y = T P + T N T P + T N + F P + F N Accuracy=\frac{TP+TN}{TP+TN+FP+FN} Accuracy=TP+TN+FP+FNTP+TN -
精确度(Precision)=阳性预测值(Positive Predictive Value) PPV
P r e c i s i o n = T P T P + F P Precision=\frac{TP}{TP+FP} Precision=TP+FPTP -
召回率(Recall)= 敏感性(Sensitivity)
S e n s i t i v i t y = T P T P + F N Sensitivity=\frac{TP}{TP+FN} Sensitivity=TP+FNTP -
特异性(Specificity)
S p e c i f i c i t y = T N T N + F P Specificity=\frac{TN}{TN+FP} Specificity=TN+FPTN -
漏检率(Miss Rate)
M i s s R a t e = 1 − S e n s i t i v i t y Miss Rate=1-Sensitivity MissRate=1−Sensitivity -
参数量(内存占用)- Params (M) :深度学习模型的参数,通常包括权重和偏置。
-
计算量(运行时间)- Flops:每秒浮点运算次数
-
AP: 不同 IoU阈值下的平均精度,平均精度指的是PR曲线下面积。
-
Inf time (FPS) :FPS表示模型每秒可以处理的帧数,用于评估模型的效率。
其他问题:
-
mmdetection参数量、计算量和FPS:
https://blog.csdn.net/weixin_40493382/article/details/128251056 -
参数量和内存占用之间的关系:
https://oldpan.me/archives/how-to-calculate-gpu-memory -
COCO评估工具箱中AP的计算:
https://www.bilibili.com/video/BV1ez4y1X7g2/?spm_id_from=333.999.0.0&vd_source=1add2a1cdc6ef25fe4c3eb2a25bf292a
Todo:
- 医学的评估指标,随后补充。