【基础知识】目标检测评估指标大全

文章探讨了准确性、精度、召回率、特异性等指标在评估IT技术,尤其是深度学习模型中的重要性,以及参数量、计算量(如FLOPs)和模型效率(FPS)的关联。还提及了mmdetection库的参数管理以及COCO评估工具中的AP计算方法。
摘要由CSDN通过智能技术生成
  • 准确率(Accuracy)
    A c c u r a c y = T P + T N T P + T N + F P + F N Accuracy=\frac{TP+TN}{TP+TN+FP+FN} Accuracy=TP+TN+FP+FNTP+TN

  • 精确度(Precision)=阳性预测值(Positive Predictive Value) PPV
    P r e c i s i o n = T P T P + F P Precision=\frac{TP}{TP+FP} Precision=TP+FPTP

  • 召回率(Recall)= 敏感性(Sensitivity)
    S e n s i t i v i t y = T P T P + F N Sensitivity=\frac{TP}{TP+FN} Sensitivity=TP+FNTP

  • 特异性(Specificity)
    S p e c i f i c i t y = T N T N + F P Specificity=\frac{TN}{TN+FP} Specificity=TN+FPTN

  • 漏检率(Miss Rate)
    M i s s R a t e = 1 − S e n s i t i v i t y Miss Rate=1-Sensitivity MissRate=1Sensitivity

  • 参数量(内存占用)- Params (M) :深度学习模型的参数,通常包括权重和偏置。

  • 计算量(运行时间)- Flops:每秒浮点运算次数

  • AP: 不同 IoU阈值下的平均精度,平均精度指的是PR曲线下面积。

  • Inf time (FPS) :FPS表示模型每秒可以处理的帧数,用于评估模型的效率。

其他问题:

  1. mmdetection参数量、计算量和FPS:
    https://blog.csdn.net/weixin_40493382/article/details/128251056

  2. 参数量和内存占用之间的关系:
    https://oldpan.me/archives/how-to-calculate-gpu-memory

  3. COCO评估工具箱中AP的计算:
    https://www.bilibili.com/video/BV1ez4y1X7g2/?spm_id_from=333.999.0.0&vd_source=1add2a1cdc6ef25fe4c3eb2a25bf292a

Todo:

  • 医学的评估指标,随后补充。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值