代码实战(小土堆)——Transforms的使用(一)(二)

本文介绍了如何在Python中使用torchvision.transforms的ToTensor函数将PIL图片转换为张量,并通过TensorBoard添加图像日志的过程。
摘要由CSDN通过智能技术生成

代码一

from torchvision import transforms

# python的用法 ——> tensor数据类型
# 通过 transforms.ToTensor 去解决两个问题
img_path = "dataset/train/ants_image/0013035.jpg"
img = Image.open(img_path)

# 1、transforms该如何使用
tensor_trans = transforms.ToTensor() 
tensor_img = tensor_trans(img) 

print(tensor_img)

  • transforms.ToTensor():取出 transforms中的ToTensor(创建具体的工具)
  • tensor_trans(img):使用ToTensor,返回tensor类型的图片(使用工具) 

代码二

from PIL import Image
from torch.utils.tensorboard import SummaryWriter
from torchvision import transforms

img_path = "dataset/train/ants_image/0013035.jpg"
img = Image.open(img_path)

writer = SummaryWriter("logs")

tensor_trans = transforms.ToTensor()
tensor_img = tensor_trans(img)

writer.add_image("Tensor_img", tensor_img)

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值