Python+opencv 中值滤波

import cv2
import matplotlib.pyplot as plt
import matplotlib
import numpy as np
import random

# 设置画图支持中文
font = {'family': 'SimHei', 'size': 6}
matplotlib.rc('font', **font)


def add_noise(image, noise_num):
    ''' 添加椒盐噪声
    :param image: 待添加噪声的图像
    :param noise_num: 需要添加的噪声数量
    :return: 添加噪声后的图像
    '''
    import copy
    img = copy.deepcopy(image)
    img_size = img.shape
    rows, cols = img_size[0], img_size[1]
    for i in range(noise_num):
        x = np.random.randint(0, rows)
        y = np.random.randint(0, cols)
        if len(img_size) > 2:   # if判断是彩图还是灰度图
            if random.random() > 0.5:
                img[x, y, :] = 255
            else:
                img[x, y, :] = 0
        else:
            if random.random() > 0.5:
                img[x, y] = 255
            else:
                img[x, y] = 0
    return img


# 图像路径
img_path = 'lenna.bmp'

# 按三通道图像格式读入
source = cv2.imread(img_path, cv2.IMREAD_UNCHANGED)
if len(source.shape) > 2:  # 彩图显示到plt上需要将BGR转为RGB
    source = cv2.cvtColor(source, cv2.COLOR_BGR2RGB)

source_noise = add_noise(source, 10000)
source_noise_average_filtering = cv2.blur(source_noise, ksize=(3, 3))
source_noise_gaussian_filter = cv2.GaussianBlur(source_noise, (3, 3), 0)
source_noise_median_filter = cv2.medianBlur(source_noise, ksize=3)


imgs = [source_noise,
        source_noise_average_filtering,
        source_noise_gaussian_filter,
        source_noise_median_filter]
titles = ['噪声图',
          '噪声图均值滤波',
          '噪声图高斯滤波',
          '噪声图中值滤波']

for idx in range(len(imgs)):
    plt.subplot(1, 4, idx + 1)  # 1行4列,将图像放置在第idx+1位置上(从左往右,从上到下计数)
    plt.imshow(imgs[idx], cmap='gray')
    plt.title(titles[idx])
    plt.axis('off')

# 保存图像,bbox_inches='tight'去除边缘空白,dpi设置图像清晰度
plt.savefig('中值滤波.png', bbox_inches='tight', dpi=300)
plt.show()

在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值