时间序列数据是在有序的时间段内测量某些变量的数据点序列。它是增长最快的数据库类别,因为它广泛用于各种行业,以了解和预测数据模式。因此,在准备这些时间序列数据进行建模时,检查时间序列组件或模式非常重要。 其中之一就是趋势。
趋势是数据中的一种模式,它显示了一个系列在很长一段时间内相对较高或较低的值的运动。换句话说,当时间序列中存在增加或减少的斜率时,观察到趋势。趋势通常发生一段时间,然后消失,它不会重复。例如,一首新歌出现,它流行了一段时间,然后就消失了。它很有可能再次成为趋势。
一种趋势可能是:
- 上升趋势:时间序列分析显示一个向上的一般模式,然后它是上升趋势。
- 下降趋势:时间序列分析显示一个向下的模式,然后它是下降趋势。
- 水平或平稳趋势:如果没有观察到模式,则称为水平或平稳趋势。
您可以通过简单的可视化或分解数据集来发现数据中的趋势。
可视化示例
通过简单地绘制数据集,您可以看到数据的总体趋势
注:在下面给出的示例中,相同的代码用于显示所有三种趋势,只是所使用的数据集不同,以反映特定的趋势。
示例:上升趋势
# importing the libraries
import pandas as pd
import matplotlib
# importing dataset
data = pd.read_csv(r'C:\Users\admin\Downloads\Electric_Production.csv')
# casting Month column to datetime object
data['DATE'] = pd