Python中的时序分析和可视化案例

本文介绍了时间序列数据的概念,探讨了如何使用Python库如Pandas、Numpy和Matplotlib对这类数据进行处理、可视化,包括数据加载、季节性分析、重采样、趋势检测和箱线图展示。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

每个数据集都有自己的特征,我们使用它们的特征作为特征来深入了解数据。在本文中,我们将讨论一种重要的数据集,即时间序列数据。

什么是时间序列数据

时间序列数据是按连续时间顺序列出的一系列数据点,或者我们可以说时间序列数据是时间上连续等间隔点的序列。时间序列分析包括分析时间序列数据的方法,以提取有意义的见解和数据的其他有价值的特征。

时间序列数据是按连续时间顺序列出的一系列数据点,或者我们可以说时间序列数据是时间上连续等间隔点的序列。时间序列分析包括分析时间序列数据的方法,以提取有意义的见解和数据的其他有价值的特征。

使用Python实现时间序列数据可视化

我们将使用Python库来可视化数据。数据集的链接可以在这里找到。

https://github.com/Neelu-Tiwari/dataset/blob/main/stock_data.csv

我们将像在任何时间序列数据项目中一样一步一步地执行可视化。

导入库

我们将在一个地方导入本文中使用的所有库,这样就不必每次使用时都导入,这将保存我们的时间和精力。

  • Numpy -一个用于数值数学计算和处理多维ndarray的Python库,它也有一个非常大的数学函数集合来操作这个数组。
  • Pandas -一个构建在NumPy之上的Python库,用于有效的矩阵乘法和矩阵操作,它也用于数据清理,数据合并,数据整形和数据聚合。
  • Matplotlib -它用于绘制2D和3D可视化图,它还支持各种输出格式,包括数据图形。
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt

加载数据集

为了将数据集加载到一个框架中,我们将使用pandas read_csv()函数。我们将使用head()函数打印数据集的前五行。在这里,我们将在read_csv函数中使用’parse_dates’参数将’Date’列转换为DatetimeIndex格式。默认情况下,日期以字符串格式存储,这不是时间序列数据分析的正确格式。

# reading the dataset using read_csv
df = pd.read_csv("stock_data.csv", 
				parse_dates=True, 
				index_col="Date")

# displaying the first five rows of dataset
df.head()

输出

            Unnamed: 0   Open   High    Low  Close    Volume  Name
Date                                                              
2006-01-03         NaN  39.69  41.22  38.79  40.91  24232729  AABA
2006-01-04         NaN  41.22  41.90  40.77  40.97  20553479  AABA
2006-01-05         NaN  40.93  41.73  40.85  41.53  
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

python收藏家

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值