高速信号走表层会不会带来EMC问题?高速信号能不能走外层?微带线和带状线优势和劣势有哪些?高速信号可以走微带线吗?

来自群友的疑难杂症(加杨老师V信:PCB206 可入群):有群友反馈了一个关于高速信号走线的问题,  一则是担心信号质量,能不能走表层的问题?二则是担心高速信号走表层有EMC问题,担心产品EMC过不了或者出现电磁干扰。

针对第一个问题杨老师给的答复是:

高速信号肯定是可以走外层的. 至于什么时候可以走,什么时候不可以走,还是要视具体项目的设计情况而定  不能一概而论。

大家知道海思很多平台都是2层板  4层板,如摄像机,路由器等等这些产品海思推荐的方案基本都是2层和4层, 若不能走外层,那就没有层可以走了。不仅仅是海思平台,高通平台,intel平台也是如此,没有哪个平台禁止外层走高速线,只是有的信号建议走内层。无论是平板,还是电脑主板,很多为了省成本,层数都压缩到了四层,这种情况下你还觉得外层不能走高速线吗?

其实外层走高速线还是有一些优势的:

其一:高速信号若比较短,走表层就不需要过孔换层,也就没有过孔处带来的stub(一般的高速信号是没有考虑背钻的,成本在那),过孔换层若带来参考平面的变化  对于信号的影响也将是比较大的。另外过孔本身带有寄生电容和寄生电感,对高速信号的影响比较大。寄生电容会将信号的上升沿变缓。这一点对于信号完整性来说 肯定是有一定优势的。

其二:表层布线的一侧是介质,一侧是空气(忽略阻焊油漆),等效介电常数小于中间层,传输线延时较小,这个特点决定了表层走线可以有更快的信号传输速度.  

其三:同样的层叠,满足相同的阻抗要求,表面走线一般而言会宽一点,这样衰减相对而言就更小一些。

那为什么很多人很少外层走高速线,偶尔遇到又不敢走?

我们所说的表底层一般是器件面层  器件面层本身就要放置很多器件,一般走线好的通道就没有了  表底层也走不了很多信号线。更别说走高速信号线了。加上习惯性的走内层(内层毕竟要干净,对于EMC方面肯定是更好了,相当于一个屏蔽墙体)没有走过表层,走过表层后也没有测试过EMC,当然就会有这个疑虑,自然而然就觉得走不了高速线。

那么表层走高速线到底会不会带来EMC?

答案:会,但是若不足以致命,又能符合EMC各项标准,高速信号当然能走表层。无论是外层还是内层,走不好都会带来EMC问题。高速PCB设计只有最优设计,没有绝对或者量化的设计。总之一句话:it depends(视情况而定)

理由如下:

EMC问题是相对的,不是有没有,带不带来的问题,而是符不符合电磁接受标准的问题。能满足产品及性能要求 又没有出现任何的EMC超标,我们就可以说这个产品是没有问题的。针对表层走高速线到底会不会带来EMC问题,也是同样的道理,若带来的EMC足够小,不足以影响产品的性能  又符合各项EMC标准,那么就是可以的。我们从原理出发,EMC问题的产生必须存在三个要素:干扰源、耦合路径和敏感设备。我们知道外层(微带线)所属的环境是直接对外辐射的,而且内层走线因为上下都是平面保护,屏蔽效果肯定是要优于外层的。从测试的数据看,内层的走线比外层走高速线辐射值还是要小一些的,这个大家敢兴趣的可以去研究一下,去实测一下。

那针对高速信号走表层还是内层的情况,给的建议参考如下:

1,对于多层板 特别是上下有个GND平面的情况下,高速信号又比较长,则基本不用考虑外层走线  直接走内层。诸如高速 高频 尤其时钟信号都是强辐射信号都是同样的道理。针对弱小信号及易受干扰的信号也是同样对待。毕竟表层若长距离走线,表层走线构成的单极子天线辐射模型会加大时钟的高次谐波辐射值。

2,若高速信号走线比较短,高速通道也是干净的,走内层需要两次过孔换层或者出现内层走相邻层高速走线的情况,那么直接走外层。我们知道过孔换层会带了过孔垂直方向的阻抗不连续,阻抗不连续的点会带来信号的反射,反射就可能有比较大的过冲,过冲的幅值是辐射的来源。过孔处多余的残桩线也会有天线效应。相邻层走线的串扰也会带来EMI问题。

3,高速信号线换层走线,应以同一层参考平面为中心,保持回流电流在同一平面层上流动,保证电流的连续性。对于高频电流,由于导体的趋肤效应,回流电流是在参考平面的两个表面流动的。高速信号换层处记得加上地孔,也就是将两层地平面连接起来,以保证地平面上回流电流的连续性,毕竟信号回流路径也是会造成EMI问题。

图片

高速PCB设计是一门综合学科,你要学封装,学硬件,学信号完整性,学电磁兼容,学生产工艺,还要熟悉各种协议标准,各种芯片平台等等,这么多的综合学科就造就了高速PCB设计不可能是绝对的,不可能是量化的,不能以拥有某种固化的理论去进行。产品不同,环境不同,情况不同带来的高速PCB设计也是不同的;

深度学习是机器学习的一个子领域,它基于人工神经网络的研究,特别是利用多层次的神经网络来进行学习和模式识别。深度学习模型能够学习数据的层次特征,这些特征对于图像和语音识别、自然语言处理、医学图像分析等应用至关重要。以下是深度学习的一些关键概念和组成部分: 1. **神经网络(Neural Networks)**:深度学习的基础是人工神经网络,它是由多个层组成的网络结构,包括输入层、隐藏层和输出层。每个层由多个神经元组成,神经元之间通过权重连接。 2. **前馈神经网络(Feedforward Neural Networks)**:这是最常见的神经网络类型,信息从输入层流向隐藏层,最终到达输出层。 3. **卷积神经网络(Convolutional Neural Networks, CNNs)**:这种网络特别适合处理具有网格结构的数据,如图像。它们使用卷积层来提取图像的特征。 4. **循环神经网络(Recurrent Neural Networks, RNNs)**:这种网络能够处理序列数据,如时间序列或自然语言,因为它们具有记忆功能,能够捕捉数据中的时间依赖性。 5. **长短期记忆网络(Long Short-Term Memory, LSTM)**:LSTM 是一种特殊的 RNN,它能够学习长期依赖关系,非常适合复杂的序列预测任务。 6. **生成对抗网络(Generative Adversarial Networks, GANs)**:由两个网络组成,一个生成器和一个判别器,它们相互竞争,生成器生成数据,判别器评估数据的真实性。 7. **深度学习框架**:如 TensorFlow、Keras、PyTorch 等,这些框架提供了构建、训练和部署深度学习模型的工具和库。 8. **激活函数(Activation Functions)**:如 ReLU、Sigmoid、Tanh 等,它们在神经网络中用于添加非线性,使得网络能够学习复杂的函数。 9. **损失函数(Loss Functions)**:用于评估模型的预测与真实值之间的差异,常见的损失函数包括均方误差(MSE)、交叉熵(Cross-Entropy)等。 10. **优化算法(Optimization Algorithms)**:如梯度下降(Gradient Descent)、随机梯度下降(SGD)、Adam 等,用于更新网络权重,以最小化损失函数。 11. **正则化(Regularization)**:技术如 Dropout、L1/L2 正则化等,用于防止模型过拟合。 12. **迁移学习(Transfer Learning)**:利用在一个任务上训练好的模型来提另一个相关任务的性能。 深度学习在许多领域都取得了显著的成就,但它也面临着一些挑战,如对大量数据的依赖、模型的解释性差、计算资源消耗大等。研究人员正在不断探索新的方法来解决这些问题
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值