【线段树】区间修改(区间覆盖、区间权值加)标记下放操作的逻辑顺序

洛谷传送门:月下“毛景树”

        由于没有合适的题目,就从这道题入手,解此题时用到的算法/数据结构包括:

  • 树链剖分
  • 线段树(区间覆盖、区间加、区间查询、单点修改)

        这道题被我调试了四个小时才过,而且此题的测试点设置得极不友好,提交记录非0即100,每个点的数据范围都很大,几乎没有供调试的价值,所以推荐那些下载数据调试的朋友们,自己捏几组数据调试,没问题以后再和下载的数据对拍,可以说是能够对一个点就能全部AC了。

这篇博客不谈题解,只来说说线段树上的lazy标记如何下放


接下来进入正题

线段树的lazy标记

        众所周知,线段树的单点修改、单点查询理论复杂度是O(logn)的,那么如果修改/查询m次,那么理论复杂度就达到O(mlogn),这样的复杂度是可以被接受的;但是如果一次修改/查询一个区间,并且连续进行m次这样的操作,那么最坏情况下的复杂度就上升到了O(mnlogn),这在1e5的数据范围下是很容易超时的,所以我们采取一种策略来降低复杂度——lazy标记

        lazy就是将线段树上的操作推迟进行,具体推迟到什么时候呢?什么时候再次需要用到这一个区间了就什么时候再操作,也就是说如果这段区间不再被需要使用,那么这次操作是否执行就是对后续要进行的工作没有影响的,那么我们也就没有必要做这个操作,可以将它推迟到永远也不执行,以此实现对时间复杂度的优化。

        举个例子:

        现在我有一棵线段树,原序列编号从1开始,我希望进行的操作是将区间 [5,8] 的权值加一,并查询区间 [5,6] 的最值,按照单点修改的方法,就要在线段树上二分查找,直到找到了线段树的叶子节点,然后修改叶子节点的点权,再回溯修改上面的节点。

        但我们会发现,这样一来,对 [7,8] 的修改操作是否进行是对答案没有影响的,所以我们就可以选择将对 [7,8] 的修改操作推迟,只进行 [5,6] 的修改操作,具体如何执行呢?

  1. 在维护线段树上每个节点信息的同时对每个节点维护一个名为“lazy”的变量
  2. lazy代表当前节点有(过)区间修改的操作
  3. 如果要对当前区间进行修改,那么修改信息的同时修改lazy值
  4. 维护好lazy信息后不再继续向下遍历,回溯即可
  5. 如果再次遍历到该节点,则下放lazy标记

        如图所示:

        进行区间修改时首先找到线段树上的区间 [l,r],满足 l >= 5 && r <= 8 ,然后对该区间打一个lazy标记并更新该区间信息,接着回溯,更新上面节点的信息。

        这样第一步操作就结束了,接下来进行第二步操作,查询时依然用二分的方法找到一个区间 [l,r],满足 l >= 5 && r <= 6,并返回该区间的信息,最后合并所有返回的信息(这里我们只返回了一个区间,不需要合并)。

        但出现了一个问题,要查询的区间因为lazy标记而导致操作推迟,返回的并不是正确的信息,怎么办呢?好说,在返回之前把被推迟的操作做了就行了。具体来说,就是在遍历过程中把被遍历到的节点的lazy标记下放

         图中红色箭头表示遍历路径,凡是被遍历过并且lazy标记不为零的节点,都要对lazy标记进行下放,这样就能保证之前被推迟的操作在直接产生作用之前被执行。


区间覆盖与区间加的lazy下放

        区间覆盖与区间加是两个完全不同的操作,自然就需要两个不同的lazy标记。这一部分我就拿例题中的线段树来举例好了。

struct node {
    int l, r, v;
    int lz = 0;
    int cvr = -1;
};
node tr[maxn << 2];

        我们首先定义好线段树上的lazy标记和其他信息。其中 lz 表示区间加的 lazy,cvr 表示区间覆盖的 lazy。

int ask(int id, int tgtl, int tgtr);
int pls(int id, int tgtl, int tgtr, int k);
int cvr(int id, int tgtl, int tgtr, int k);

        此题中涉及了区间查询、区间加、区间覆盖,所以我们定义以上三个函数(单点修改可以认为是在区间 [l,r] 上的区间修改,其中 l == r),参数 id 表示线段树上当前节点的编号,tgtl 和 tgtr表示目标区间的左端点和右端点,k 表示操作参数。

        在这三个函数中,每到达一个节点,就应该有如下语句:

    int l = tr[id].l;
    int r = tr[id].r;    
    if (tr[id].cvr != -1) {
        if (l != r) cvrdown(id);    //如果不是叶子结点才需要下放
        tr[id].cvr = -1;
        tr[id].lz = 0;
    }
    if (tr[id].lz) {
        if (l != r) putdown(id);    //同上,判断叶子结点
        tr[id].lz = 0;
    }

        其中 cvrdown(int id)putdown(int id) 是另外定义的两个函数,用来执行两个lazy标记的下放操作,函数的定义如下:

inline void cvrdown(int id) {
    tr[id << 1].v = tr[id].cvr;
    tr[id << 1 | 1].v = tr[id].cvr;
    tr[id << 1].cvr = tr[id].cvr;
    tr[id << 1 | 1].cvr = tr[id].cvr;
    return;
}

inline void putdown(int id) {
    node ls = tr[id << 1];
    node rs = tr[id << 1 | 1];
    ls.v += tr[id].lz;
    rs.v += tr[id].lz;
    ls.lz += tr[id].lz;
    rs.lz += tr[id].lz;
    tr[id << 1] = ls;
    tr[id << 1 | 1] = rs;
    return;
}

        值得注意的是,上面的代码是不正确的!如果覆盖操作在区间加操作之后,那么区间覆盖会掩盖之前的所有操作,所以cvr标记的下放可以将节点的cvr和lz都清空但是!如果区间加操作在覆盖操作之后,那么区间加操作的结果是建立在区间覆盖的结果之上的,也就是在执行putdown函数时,要先检查儿子节点有没有 cvr 标记,如果有的话,先把 cvr 标记下放了,再下放 lz 标记,那么正确的代码如下

inline void cvrdown(int id) {
    tr[id << 1].v = tr[id].cvr;
    tr[id << 1 | 1].v = tr[id].cvr;
    tr[id << 1].cvr = tr[id].cvr;
    tr[id << 1 | 1].cvr = tr[id].cvr;
    return;
}

inline void putdown(int id) {
    node ls = tr[id << 1];
    node rs = tr[id << 1 | 1];
    if (ls.cvr != -1) {
        if (ls.l != ls.r) cvrdown(id << 1);
        ls.cvr = -1;
        ls.lz = 0;
    }
    if (rs.cvr != -1) {
        if (rs.l != rs.r) cvrdown(id << 1 | 1);
        rs.cvr = -1;
        rs.lz = 0;
    }
    ls.v += tr[id].lz;
    rs.v += tr[id].lz;
    ls.lz += tr[id].lz;
    rs.lz += tr[id].lz;
    tr[id << 1] = ls;
    tr[id << 1 | 1] = rs;
    return;
}

这样一来lazy的下放就完成了!


        由于本篇博客主要是分享线段树lazy标记的下放,树链剖分的部分我就不多讲了,例题的AC代码如下:

#include<bits/stdc++.h>
using namespace std;
//月下“毛景树”
const int maxn = (int)1e5 + 10;
struct alled {
    int u, v, w;
};
struct edge {
    int to, vl;
};
alled e[maxn];
vector<edge> ed[maxn];
int n, cnt;
int dfn[maxn], dep[maxn], fa[maxn];
int top[maxn], sz[maxn], vl[maxn];
int fstson[maxn], opdfn[maxn];
struct node {
    int l, r, v;
    int lz = 0;
    int cvr = -1;
};
node tr[maxn << 2];

void dfs1(int x) {
    sz[x] = 1;
    for (int i = 0; i < ed[x].size(); i++) {
        int y = ed[x][i].to;
        if (y == fa[x]) continue;
        fa[y] = x;
        dep[y] = dep[x] + 1;
        vl[y] = ed[x][i].vl;
        dfs1(y);
        sz[x] += sz[y];
        if (sz[y] > sz[fstson[x]]) fstson[x] = y;
    }
    return;
}

void dfs2(int x, int t) {
    opdfn[++cnt] = x;
    dfn[x] = cnt;
    top[x] = t;
    if (fstson[x]) dfs2(fstson[x], t);
    for (int i = 0; i < ed[x].size(); i++) {
        int y = ed[x][i].to;
        if (y == fa[x] || y == fstson[x]) continue;
        dfs2(y, y);
    }
    return;
}

void build(int id, int l, int r) {
    tr[id].l = l;
    tr[id].r = r;
    if (l == r) {
        tr[id].v = vl[opdfn[l]];
        return;
    }
    int mid = l + r >> 1;
    build(id << 1 | 1, mid + 1, r);
    build(id << 1, l, mid);
    tr[id].v = max(tr[id << 1].v, tr[id << 1 | 1].v);
    return;
}

inline void cvrdown(int id) {
    tr[id << 1].v = tr[id].cvr;
    tr[id << 1 | 1].v = tr[id].cvr;
    tr[id << 1].cvr = tr[id].cvr;
    tr[id << 1 | 1].cvr = tr[id].cvr;
    return;
}

inline void putdown(int id) {
    node ls = tr[id << 1];
    node rs = tr[id << 1 | 1];
    if (ls.cvr != -1) {
        if (ls.l != ls.r) cvrdown(id << 1);
        ls.cvr = -1;
        ls.lz = 0;
    }
    if (rs.cvr != -1) {
        if (rs.l != rs.r) cvrdown(id << 1 | 1);
        rs.cvr = -1;
        rs.lz = 0;
    }
    ls.v += tr[id].lz;
    rs.v += tr[id].lz;
    ls.lz += tr[id].lz;
    rs.lz += tr[id].lz;
    tr[id << 1] = ls;
    tr[id << 1 | 1] = rs;
    return;
}

void pls(int id, int tgtl, int tgtr, int k) {
    int l = tr[id].l;
    int r = tr[id].r;
    if (tr[id].cvr != -1) {
        if (l != r) cvrdown(id);
        tr[id].cvr = -1;
        tr[id].lz = 0;
    }
    if (tr[id].lz) {
        if (l != r) putdown(id);
        tr[id].lz = 0;
    }
    if (tgtl <= l && r <= tgtr) {
        tr[id].v += k;
        tr[id].lz += k;
        return;
    }
    int mid = l + r >> 1;
    if (mid < tgtl) pls(id << 1 | 1, tgtl, tgtr, k);
    else if (mid >= tgtr) pls(id << 1, tgtl, tgtr, k);
    else {
        pls(id << 1 | 1, tgtl, tgtr, k);
        pls(id << 1, tgtl, tgtr, k);
    }
    tr[id].v = max(tr[id << 1].v, tr[id << 1 | 1].v);
    return;
}

void cvr(int id, int tgtl, int tgtr, int k) {
    int l = tr[id].l;
    int r = tr[id].r;
    if (tr[id].cvr != -1) {
        if (l != r) cvrdown(id);
        tr[id].cvr = -1;
        tr[id].lz = 0;
    }
    if (tr[id].lz) {
        if (l != r) putdown(id);
        tr[id].lz = 0;
    }
    if (tgtl <= l && r <= tgtr) {
        tr[id].v = k;
        tr[id].lz = 0;
        tr[id].cvr = k;
        return;
    }
    int mid = l + r >> 1;
    if (mid < tgtl) cvr(id << 1 | 1, tgtl, tgtr, k);
    else if (mid >= tgtr) cvr(id << 1, tgtl, tgtr, k);
    else {
        cvr(id << 1 | 1, tgtl, tgtr, k);
        cvr(id << 1, tgtl, tgtr, k);
    }
    tr[id].v = max(tr[id << 1].v, tr[id << 1 | 1].v);
    return;
}

int ask(int id, int tgtl, int tgtr) {
    int l = tr[id].l;
    int r = tr[id].r;
    if (tr[id].cvr != -1) {
        if (l != r) cvrdown(id);
        tr[id].cvr = -1;
        tr[id].lz = 0;
    }
    if (tr[id].lz) {
        if (l != r) putdown(id);
        tr[id].lz = 0;
    }
    if (tgtl <= l && r <= tgtr) return tr[id].v;
    int mid = l + r >> 1;
    if (mid < tgtl) return ask(id << 1 | 1, tgtl, tgtr);
    else if (mid >= tgtr) return ask(id << 1, tgtl, tgtr);
    else return max(ask(id << 1 | 1, tgtl, tgtr), ask(id << 1, tgtl, tgtr));
}

inline void prepls(int x, int y, int k) {
    while (top[x] != top[y]) {
        if (dep[top[x]] > dep[top[y]]) {
            pls(1, dfn[top[x]], dfn[x], k);
            x = fa[top[x]];
        } else {
            pls(1, dfn[top[y]], dfn[y], k);
            y = fa[top[y]];
        }
    }
    if (x != y) dep[x] > dep[y] ? pls(1, dfn[y] + 1, dfn[x], k) : pls(1, dfn[x] + 1, dfn[y], k);
    return;
}

inline void precvr(int x, int y, int k) {
    while (top[x] != top[y]) {
        if (dep[top[x]] > dep[top[y]]) {
            cvr(1, dfn[top[x]], dfn[x], k);
            x = fa[top[x]];
        } else {
            cvr(1, dfn[top[y]], dfn[y], k);
            y = fa[top[y]];
        }
    }
    if (x != y) dep[x] > dep[y] ? cvr(1, dfn[y] + 1, dfn[x], k) : cvr(1, dfn[x] + 1, dfn[y], k);
    return;
}

inline int preask(int x, int y) {
    int ans = 0;
    while (top[x] != top[y]) {
        if (dep[top[x]] > dep[top[y]]) {
            ans = max(ans, ask(1, dfn[top[x]], dfn[x]));
            x = fa[top[x]];
        } else {
            ans = max(ans, ask(1, dfn[top[y]], dfn[y]));
            y = fa[top[y]];
        }
    }
    if (x != y) ans = max(ans, dep[x] > dep[y] ? ask(1, dfn[y] + 1, dfn[x]) : ask(1, dfn[x] + 1, dfn[y]));
    return ans;
}

int main() {
    scanf("%d", &n);
    for (int i = 1; i < n; i++) {
        scanf("%d %d %d", &e[i].u, &e[i].v, &e[i].w);
        edge zhx;   zhx.vl = e[i].w;
        zhx.to = e[i].v;    ed[e[i].u].push_back(zhx);
        zhx.to = e[i].u;    ed[e[i].v].push_back(zhx);
    }

    dfs1(1);
    dfs2(1, 1);
    build(1, 1, n);
    
    register char s[10];
    register int u, v, w;
    while (true) {
        cin >> s;
        if (strlen(s) == 4) break;
        else if (strlen(s) == 5) {
            scanf("%d %d %d", &u, &v, &w);
            precvr(u, v, w);
        }
        else if (strlen(s) == 6) {
            scanf("%d %d", &u, &w);
            if (dep[e[u].u] < dep[e[u].v]) cvr(1, dfn[e[u].v], dfn[e[u].v], w);
            else cvr(1, dfn[e[u].u], dfn[e[u].u], w);
        } 
        else if (s[0] == 'A') {
            scanf("%d %d %d", &u, &v, &w);
            prepls(u, v, w);
        } 
        else {
            scanf("%d %d", &u, &v);
            printf("%d\n", preask(u, v));
        }
    }

    return 0;
}

  • 6
    点赞
  • 4
    收藏
    觉得还不错? 一键收藏
  • 1
    评论
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值