[BZOJ4878]挑战NP-Hard

122 篇文章 0 订阅

题目

传送门 to BZOJ

思路

这两个问题,确实都是 N P − H a r d \tt{NP-Hard} NPHard 问题……那怎么做的出来呀?

但是 只需要解决其中一个,那就可以随便乱搞了。这是什么神仙题啊。

我们使用这样的方案: d f s \tt{dfs} dfs 对点进行染色。一个点的颜色设置成其中一个邻接点的颜色 + 1 +1 +1 ,且与邻接点的颜色均不同。比如可以设置为 mex \text{mex} mex 。注意我们并没有要求 c o l o r ≤ k color\le k colork ,我们只是单纯地将其染色而已。没有被确定颜色的邻接点就忽略。最先开始的点,颜色设置为 1 1 1

染色结束之后,如果所有点的颜色都不大于 k k k ,则问题一解决(根据染色的要求二);如果有点的颜色大于 k k k ,则问题二解决(根据染色的要求一,其邻接点中有一个的颜色恰好减少一,这个邻接点也存在一个邻接点的颜色恰好再减少一,直到颜色变为 1 1 1 ,则此路径长度为 k k k)。

代码

此处仅提供伪代码作为参考。

int color[MaxN];
void dfs(int x){
	int mx = 0;
	for(auto y : g[x]) // 使用邻接表,vector版本
		mx = max(mx,color[y]);
	color[x] = mx+1;
	for(auto y : g[x])
		if(color[y] == 0)
			dfs(y);
}
void solve(){
	dfs(1);
	bool colored = true;
	for(int i=1; i<=n; ++i)
		if(color[i] > k){
			输出路径;
			colored = false;
			break;
		}
	if(colored) 输出染色方案;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值