题目
思路
这两个问题,确实都是 N P − H a r d \tt{NP-Hard} NP−Hard 问题……那怎么做的出来呀?
但是 只需要解决其中一个,那就可以随便乱搞了。这是什么神仙题啊。
我们使用这样的方案: d f s \tt{dfs} dfs 对点进行染色。一个点的颜色设置成其中一个邻接点的颜色 + 1 +1 +1 ,且与邻接点的颜色均不同。比如可以设置为 mex \text{mex} mex 。注意我们并没有要求 c o l o r ≤ k color\le k color≤k ,我们只是单纯地将其染色而已。没有被确定颜色的邻接点就忽略。最先开始的点,颜色设置为 1 1 1 。
染色结束之后,如果所有点的颜色都不大于 k k k ,则问题一解决(根据染色的要求二);如果有点的颜色大于 k k k ,则问题二解决(根据染色的要求一,其邻接点中有一个的颜色恰好减少一,这个邻接点也存在一个邻接点的颜色恰好再减少一,直到颜色变为 1 1 1 ,则此路径长度为 k k k)。
代码
此处仅提供伪代码作为参考。
int color[MaxN];
void dfs(int x){
int mx = 0;
for(auto y : g[x]) // 使用邻接表,vector版本
mx = max(mx,color[y]);
color[x] = mx+1;
for(auto y : g[x])
if(color[y] == 0)
dfs(y);
}
void solve(){
dfs(1);
bool colored = true;
for(int i=1; i<=n; ++i)
if(color[i] > k){
输出路径;
colored = false;
break;
}
if(colored) 输出染色方案;
}