题目
题目描述
有一个
n
×
m
n\times m
n×m 的二维空间,里面有许多刚体(永不形变),每个四连通都是一个刚体。
给出这些刚体的初始位置。接下来它们将以相同的速度下落,当某个刚体再下落一格就会与别的刚体重叠时,停止下落(即,存在支撑点即会停止下落,不管重心在哪里)。特别地,地面也算是刚体(即,落到地面的刚体会停止下落)。
请问最后这些刚体的位置在哪里?
数据范围与提示
n
m
⩽
1
0
6
nm\leqslant 10^6
nm⩽106 。
思路
只需要考虑每个刚体的下落距离。根据两个刚体之间的位置,可以写出不等式 t i ⩽ t j + w i , j t_i\leqslant t_j+w_{i,j} ti⩽tj+wi,j,即 j j j 在 i i i 下方 w i , j + 1 w_{i,j}+1 wi,j+1 格的位置时 i i i 永远不可以越过它。
同时, t i t_i ti 是所有满足这样条件的 t t t 中最大的一个。所以就是 差分约束系统 啦。时间复杂度 O ( n m log n m ) \mathcal O(nm\log nm) O(nmlognm) 。
代码
#include <cstdio>
#include <iostream>
#include <vector>
#include <cstring>
#include <algorithm>
using namespace std;
# define rep(i,a,b) for(int i=(a); i<=(b); ++i)
# define drep(i,a,b) for(int i=(a); i>=(b); --i)
typedef long long int_;
inline int readint(){
int a = 0, c = getchar(), f = 1;
for(; '0'>c||c>'9'; c=getchar())
if(c == '-') f = -f;
for(; '0'<=c&&c<='9'; c=getchar())
a = (a<<3)+(a<<1)+(c^48);
return a*f;
}
inline void writeint(int x){
if(x > 9) writeint(x/10);
putchar((x-x/10*10)^48);
}
const int MAXN = 1000005;
struct Edge{ int to, nxt, val; };
Edge e[MAXN<<2];
int head[MAXN], cntEdge;
void addEdge(int a,int b,int c){
e[cntEdge].to = b, e[cntEdge].nxt = head[a];
e[cntEdge].val = c; head[a] = cntEdge ++;
}
const int infty = (1<<30)-1;
int dis[MAXN], pq[MAXN<<1];
# define updata(id,y) do{ \
dis[id] = y; \
for(int __i=(id)+n; __i>>=1; ) \
if(dis[pq[__i<<1]] > dis[pq[__i<<1|1]]) \
pq[__i] = pq[__i<<1|1]; \
else pq[__i] = pq[__i<<1]; \
} while(false) // make it portable
void dijkstra(int x,int n){
rep(i,0,n) dis[i] = infty;
rep(i,1,n) pq[i+n] = i;
memset(pq+1,0,n<<2); pq[1] = x;
for(dis[x]=0; pq[1]; ){
x = pq[1]; pq[x+n] = 0;
for(int i=head[x]; ~i; i=e[i].nxt)
if(dis[e[i].to] > dis[x]+e[i].val)
updata(e[i].to,dis[x]+e[i].val);
updata(x,dis[x]); // no change
}
}
char maze[MAXN]; int lst[MAXN];
int main(){
int n = readint(), m = readint();
memset(head+1,-1,(n*m+1)<<2);
for(int i=1,nowid=1; i<=n; ++i){
scanf("%s",maze+1);
for(int j=1; j<=m; ++j,++nowid){
if(maze[j] == '.') continue;
if(lst[j]){
addEdge(nowid,lst[j]*m-m+j,i-lst[j]-1);
if(lst[j] == i-1) // adjacent
addEdge(lst[j]*m-m+j,nowid,i-lst[j]-1);
}
lst[j] = i; // last row of SAND
if(j != 1 && maze[j-1] == '#'){
addEdge(nowid,i*m-m+j-1,0); // together
addEdge(i*m-m+j-1,nowid,0);
}
}
}
rep(j,1,m) if(lst[j] != 0)
addEdge(n*m+1,lst[j]*m-m+j,n-lst[j]);
dijkstra(n*m+1,n*m+1);
rep(i,1,n*m) maze[i] = '.';
for(int i=1,nowid=1; i<=n; ++i)
for(int j=1; j<=m; ++j,++nowid)
if(dis[nowid] != infty)
maze[(i+dis[nowid]-1)*m+j] = '#';
for(int i=1,nowid=1; i<=n; ++i){
for(int j=1; j<=m; ++j,++nowid)
putchar(maze[nowid]);
putchar('\n');
}
return 0;
}