罚函数法总结

处理有约束的优化问题时,一种常见的处理方法是: 将约束条件作为惩罚项加到目标函数中。"惩罚"是一个很形象的称呼,意思是优化过程迭代到约束条件之外时给与惩罚,或者说负反馈。例如,我们在处理最小化函数值 f f f时,在f中增加一些项,这些项会使得迭代点在可行域之外时,增大函数f的值,这些项就起到了惩罚的作用

这些约束条件可以是等式,也可以是不等式,又或者是两者都有。

在处理等式约束时,常常使用外点罚函数法,意思是迭代点允许在可行域之外(其实非常自然,因为等式约束是一种"很严格"的约束,迭代不要限制地太紧了,不然都不好迭代优化);对于不等式约束,常使用内点罚函数法,意思是不让迭代点到可行域之外。内点法适用于只有不等式约束的问题。在对函数添加罚函数后,就将有约束的优化问题转换为了无约束优化问题。

外点罚函数法

等式约束外点罚函数法

考虑问题
min ⁡ x f ( x ) x ∈ R n s . t .    c i ( x ) = 0    i ∈ E \min_x f(x) \quad x\in \mathbb{R^n}\\ s.t. \ \ c_i(x)=0 \ \ i \in \mathcal E xminf(x)xRns.t.  ci(x)=0  iE
最自然的想法,把约束条件的平方作为罚函数,即

P E ( x , σ ) = f ( x ) + 1 2 σ ∑ i c i 2 ( x ) P_E(x, \sigma)=f(x)+\frac{1}{2}\sigma \sum_i c_i^{2}(x) PE(x,σ)=f(x)+21σici2(x)
其中第二项为惩罚项,sigma称为罚因子。这种方法称为等式约束的二次外点罚函数法。其迭代过程与收敛性的证明参考文在文的《最优化计算方法》P186

上面我们说,外点罚函数法用于处理等式约束,但如果通过巧妙的设计,也可以用于不等式约束,例如对于如下问题

不等式约束外点罚函数法

min ⁡ x f ( x ) x ∈ R n s . t .    c i ( x ) ≤ 0    i ∈ I \min_x f(x) \quad x\in \mathbb{R^n}\\ s.t. \ \ c_i(x)\le0 \ \ i \in \mathcal I xminf(x)xRns.t.  ci(x)0  iI
将二次罚函数设定为如下样式

c ~ i ( x ) = max ⁡ ( x i ( x ) , 0 ) \tilde c_i(x)=\max (x_i(x),0) c~i(x)=max(xi(x),0)
那么有

P I ( x , σ ) = f ( x ) + 1 2 σ ∑ i c ~ i 2 ( x ) P_I(x, \sigma)=f(x)+\frac{1}{2}\sigma \sum_i \tilde c_i^{2}(x) PI(x,σ)=f(x)+21σic~i2(x)
可见,此时也允许迭代点在可行域之外迭代。值得注意的是, P I P_I PI仍然是可导函数,进而可以用梯度类算法求解。

同时含有等式约束与不等式约束的外点罚函数法

对于如下问题
min ⁡ x f ( x ) x ∈ R n s . t .    c i ( x ) ≤ 0     i ∈ I c ~ i ( x ) = 0     i ∈ E \min_x f(x) \quad x\in \mathbb{R^n}\\ s.t. \ \ c_i(x)\le0 \ \ \ i\in \mathcal I \\ \tilde c_i(x)= 0 \ \ \ i\in \mathcal E xminf(x)xRns.t.  ci(x)0   iIc~i(x)=0   iE

把两个罚函数相加即可

P ( x , σ ) = f ( x ) + 1 2 σ ( ∑ i c i 2 ( x ) + ∑ i c ~ i 2 ( x ) ) P(x, \sigma)=f(x)+\frac{1}{2}\sigma (\sum_i c_i^{2}(x) + \sum_i \tilde c_i^{2}(x)) P(x,σ)=f(x)+21σ(ici2(x)+ic~i2(x))

内点罚函数法

内点法使用于只有不等式约束的优化问题。其思想是: 为了使得迭代过程始终在可行域范围内,如果迭代点迭代到可行域的边界,那么给它一个极大的惩罚。这个惩罚函数的形状就像一睹墙,或者说示性函数。这个惩罚项可以用对数函数、倒数函数构造

例如对于如下问题:

min ⁡ x f ( x ) x ∈ R n s . t .    c i ( x ) ≤ 0    i ∈ I \min_x f(x) \quad x\in \mathbb{R^n}\\ s.t. \ \ c_i(x)\le0 \ \ i \in \mathcal I xminf(x)xRns.t.  ci(x)0  iI
保持迭代点含于可行域内部的方法是 定义障碍函数
G ( x , r ) = f ( x ) 十 r B ( x ) G(x, r)=f(x) 十 r B(x) G(x,r)=f(x)rB(x)
其中 B ( x ) \mathbf{B}(\mathbf{x}) B(x) 是连续函数, 当点 x \mathbf{x} x 趋向可行域 边界时, B ( x ) → + ∞ B(x) \rightarrow+\infty B(x)+
两种最重要的形式
B ( x ) = ∑ i = 1 m 1 g i ( x ) B ( x ) = − ∑ i = 1 m log ⁡ g i ( x ) \begin{aligned} &B(x)=\sum_{i=1}^{m} \frac{1}{g_{i}(x)} \\ &B(x)=-\sum_{i=1}^{m} \log g_{i}(x) \end{aligned} B(x)=i=1mgi(x)1B(x)=i=1mloggi(x)
r是很小的正数。这样, 当x趋向边界时, 函数 G ( x , r ) → + ∞ G(\mathbf{x}, \mathbf{r}) \rightarrow +\infty G(x,r)+ ; 否则, 由于 r \mathbf{r} r 很小, 则函数 G ( x , r ) \mathbf{G}(\mathbf{x}, \mathbf{r}) G(x,r) 的取值近似 f ( x ) \mathbf{f}(\mathbf{x}) f(x) 。因此, 可通过求解 下列问题得到的近似解:
min ⁡ G ( x , r ) s . t .    x ∈ i n t S \min G(x, r) \\ s.t. \ \ x \in intS minG(x,r)s.t.  xintS
由于 B ( x ) \mathrm{B}(\mathrm{x}) B(x) 的存在,在可行域边界形成“围墙”, 因此的解x必含于可行域的内部
B(x)的阻挡作用是自动实现的, 因此从计算的观点看,可当作无约束问题来处理

参考

  • 《最优化计算方法》文再文
  • 《凸优化》Stephen Boyd
  • 7
    点赞
  • 67
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
### 回答1: 罚函数法是一种数值优化方法,用于求解无约束优化问题。它通过在目标函数中增加一个罚函数来将约束条件转化为目标函数的惩罚项,从而将无约束优化问题转化为有约束优化问题。 在Python中,可以使用SciPy库中的optimize.minimize函数来实现罚函数法。具体步骤如下: 1. 定义目标函数和约束条件函数 ```python def objective(x): return x[0]**2 + x[1]**2 def constraint(x): return x[0] + x[1] - 1 ``` 2. 定义罚函数 ```python def penalty(x, rho): return rho * max(0, constraint(x))**2 ``` 3. 定义总目标函数(包括罚函数) ```python def total_objective(x, rho): return objective(x) + penalty(x, rho) ``` 4. 使用optimize.minimize函数求解优化问题 ```python from scipy import optimize x0 = [0, 0] # 初始值 rho = 1 # 罚函数系数 res = optimize.minimize(total_objective, x0, args=(rho,)) print(res.x) ``` 其中,args是传递给total_objective函数的额外参数,即罚函数系数rho。最终结果res.x是优化得到的最优解。 ### 回答2: 罚函数法(penalty function method)是一种在优化问题中使用的数值优化方法。它通过将约束条件转化为目标函数的惩罚项,从而将带约束的优化问题转化为无约束的优化问题。 在Python中,可以使用罚函数法来解决带约束的优化问题。首先,需要定义目标函数和约束条件。目标函数表示我们要优化的目标,约束条件表示问题的限制条件。接下来,我们可以使用罚函数法来将约束条件转化为目标函数的惩罚项。 具体而言,我们可以定义一个惩罚函数,它在目标函数偏离约束条件时会增加一个惩罚项。这个惩罚项的大小取决于目标函数与约束条件的偏差大小。然后,我们将目标函数和惩罚项相加,得到一个新的目标函数。通过最小化这个新的目标函数,我们可以求解出优化问题的解。 在Python中,我们可以使用数值优化库(如scipy.optimize)来实现罚函数法。首先,我们需要定义目标函数和约束条件的函数形式,并使用这些函数来构造一个目标函数和约束条件的对象。然后,我们可以使用罚函数法算法(如罚函数法罚函数法)来求解优化问题。 总之,罚函数法是一种在优化问题中使用的数值优化方法,它通过将约束条件转化为目标函数的惩罚项来解决带约束的优化问题。在Python中,我们可以使用罚函数法来解决优化问题,通过定义目标函数和约束条件的函数形式,并使用数值优化库来求解优化问题。 ### 回答3: 罚函数法是一种用的优化方法,通用来解决约束优化问题。在Python中,可以使用罚函数法来求解这类问题。 首先,我们需要定义目标函数和约束条件。目标函数是我们希望优化的函数,约束条件是满足问题要求的条件。接下来,我们引入罚函数,它是目标函数和约束条件的结合。 罚函数法的思想是将约束条件以一个惩罚项的方式加入到目标函数中,从而将约束条件转化为目标函数的一部分。这样,我们就可以将约束优化问题转化为无约束的优化问题。 具体实现中,我们可以通过定义一个惩罚参数来控制罚函数的惩罚程度,将约束条件视为罚函数的一部分。然后,在优化过程中,将目标函数和罚函数的惩罚项结合起来,形成一个新的目标函数。 最后,我们使用用的优化算法,比如梯度下降或者遗传算法等,来求解新的目标函数。通过多次迭代求解,我们可以得到接近问题最优解的结果。 总之,罚函数法是一种解决约束优化问题的用方法,可以在Python中实现。这种方法通过引入罚函数将约束条件转化为目标函数的一部分,并采用优化算法进行求解。使用罚函数法,我们可以更方便地处理约束优化问题,并得到较好的结果。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值