矩阵分析(2)--正规矩阵、正交矩阵

本文详细阐述了正规矩阵的定义、重要性及其与谱定理的关系,强调了正规矩阵的酉相似对角化特性。讨论了二阶矩阵的特殊性质,如相似变换至上三角矩阵,以及正交矩阵的定义、性质和实例,如旋转、反射矩阵和哈达玛矩阵。同时涉及矩阵的零空间、子空间和正定性的判断标准。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

正规矩阵

正规矩阵是很重要也很特殊的一类矩阵,因为它能使得谱定理成立,也一定能够相似对角化

在数学中,正规矩阵 (英语: normal matrix) A \mathbf{A} A 是与自己的共轭转置满 足交换律的实系数方块矩阵,也就是说, A \mathbf{A} A 满足
A ∗ A = A A ∗ \mathbf{A}^{*} \mathbf{A}=\mathbf{A} \mathbf{A}^{*} AA=AA
其中 A ∗ \mathbf{A}^{*} A A \mathbf{A} A 的共轭转置。
如果 A \mathbf{A} A 是实系数矩阵, 则 A ∗ = A T \mathbf{A}^{*}=\mathbf{A}^{T} A=AT, 从而条件简化为 A T A = A A T \mathbf{A}^{T} \mathbf{A}=\mathbf{A} \mathbf{A}^{T} ATA=AAT 其 中 A T \mathbf{A}^{T} AT A \mathbf{A} A 的转置矩阵。

  • 前面说到,一个线性变换可以用矩阵来表示。而正规算子用矩阵来表示,得到的就是一个正规矩阵。任何一个正规矩阵,都是某个正规算子在一组标准正交基下的矩阵;反之,任一正规算子在一组标准正交基下的矩阵都为正规矩阵。从这里看出来,因为正规算子是很稀少的,所以正规矩阵也是很稀少的一种矩阵
  • 矩阵的正规性是检验矩阵是否可对角化的一个简便方法: 任意正规矩阵都 可在经过一个酉变换后变为对角矩阵,反过来所有可在经过一个酉变换后 变为对角矩阵的矩阵都是正规矩阵。矩阵可酉相似对角化的充要条件是它为正规矩阵(注意是对角化不是三角化)。还要注意一点,相似对角化的条件很弱(特征向量够多),酉相似对角化的条件很强(需要正规矩阵)

对二阶方阵的一些分析

首先明白一个定理: 任何矩阵都可以通过相似变换变换为上三角矩阵

  1. 标准形式

 Thm.  T 2 × 2 ⇒ T ≅ [ a b 0 c ] , b ≥ 0 , uniquely (except a,c may interchange)  \text { Thm. } T \quad 2 \times 2 \Rightarrow T \cong\left[\begin{array}{ll} a & b \\ 0 & c \end{array}\right], \mathrm{b} \geq 0 \text {, uniquely (except a,c may interchange) }  Thm. T2×2T[a0bc],b0, uniquely (except a,c may interchange) 

  1. 酉等价

T 1 , T 2 2 × 2 T_{1}, T_{2} 2 \times 2 T1,T22×2
(i) T 1 ≅ T 2 ⇔ T_{1} \cong T_{2} \Leftrightarrow T1T2 same canonical form.
(ii) T 1 ≅ T 2 ⇔ tr ⁡ T 1 = tr ⁡ T 2 , tr ⁡ T 1 2 = tr ⁡ T 2 2 ⏟ ↓ & tr ⁡ ( T 1 ∗ T 1 ) = tr ⁡ ( T 2 ∗ T 2 ) T_{1} \cong T_{2} \Leftrightarrow \underbrace{\operatorname{tr} T_{1}=\operatorname{tr} T_{2}, \operatorname{tr} T_{1}^{2}=\operatorname{tr} T_{2}^{2}}_{\mathbb{\downarrow}} \& \operatorname{tr}\left(T_{1}^{*} T_{1}\right)=\operatorname{tr}\left(T_{2} * T_{2}\right) T1T2 trT1=trT2,trT12=trT22&tr(T1T1)=tr(T2T2)
T 1 , T 2 T_{1}, T_{2} T1,T2 same eigenvalues. Hilbert-Schmidt norm same
(Reason: tr ⁡ T = \operatorname{tr} T= trT= sum of eigenvalues of T T T )
(iii) T 1 ≅ T 2 ⇔ tr ⁡ T 1 = tr ⁡ T 2 , det ⁡ T 1 = det ⁡ T 2 ⏟ ↓ & ∥ T 1 ∥ F = ∥ T 2 ∥ F T_{1} \cong T_{2} \Leftrightarrow \underbrace{\operatorname{tr} T_{1}=\operatorname{tr} T_{2}, \operatorname{det} T_{1}=\operatorname{det} T_{2}}_{\mathbb{\downarrow}} \&\left\|T_{1}\right\|_{F}=\left\|T_{2}\right\|_{F} T1T2 trT1=trT2,detT1=detT2&T1F=T2F.
same eigenvalues.
(Reason: det ⁡ T = \operatorname{det} T= detT= product of eigenvalues of T T T )
(iv) T 1 ≅ T 2 ⇔ W ( T 1 ) = W ( T 2 ) T_{1} \cong T_{2} \Leftrightarrow W\left(T_{1}\right)=W\left(T_{2}\right) T1T2W(T1)=W(T2).

  1. 一些数值性质

Def. T ∈ n × n , W ( T ) = { ⟨ T x , x ⟩ : x ∈ C n ; ∥ x ∥ = 1 } ⊆ C T \in n \times n, W(T)=\left\{\langle T x, x\rangle: x \in \mathbb{C}^{n} ;\|x\|=1\right\} \subseteq \mathbb{C} Tn×n,W(T)={Tx,x:xCn;x=1}C
Hausdorff-Toeplitz:
W ( T ) W(T) W(T) is convex in C \mathbb{C} C.
Thm. (O. Toeplitz, 1918)
T = [ a b 0 c ] ⇒ W ( T ) = T=\left[\begin{array}{ll}a & b \\ 0 & c\end{array}\right] \Rightarrow W(T)= T=[a0bc]W(T)= elliptic disc, foci at a , c a, c a,c & length of minor axis = ∣ b ∣ =|\mathrm{b}| =b.

即对长度为1的向量来说,用内积<Tx,x>张成的一定是一个凸集。不仅如此,海是一个以a、c为焦点、以b为短轴长度的椭圆

矩阵的四个基本子空间

 矩阵  A m × n  的四个基本子空间 :   列空间  C ( A )  ,行空间  C ( A T )  ,   零空间  N ( A )  ,  A T  的零空间  N ( A T )  若  rank ⁡ ( A ) = r  ,   则  dim ⁡ ( C ( A ) ) = dim ⁡ ( C ( A T ) ) = r  ,  dim ⁡ ( N ( A ) ) = n − r , dim ⁡ ( N ( A T ) ) = m − r \begin{aligned} &\text { 矩阵 } A_{m \times n} \text { 的四个基本子空间 : } \\ &\text { 列空间 } C(A) \text { ,行空间 } C\left(A^{T}\right) \text { , } \\ &\text { 零空间 } N(A) \text { , } A^{T} \text { 的零空间 } N\left(A^{T}\right) \\ &\text { 若 } \operatorname{rank}(A)=r \text { , } \\ &\text { 则 } \operatorname{dim}(C(A))=\operatorname{dim}\left(C\left(A^{T}\right)\right)=r \text { , } \\ &\operatorname{dim}(N(A))=n-r , \operatorname{dim}\left(N\left(A^{T}\right)\right)=m-r \end{aligned}  矩阵 Am×n 的四个基本子空间 :  列空间 C(A) ,行空间 C(AT)   零空间 N(A)  AT 的零空间 N(AT)  rank(A)=r    dim(C(A))=dim(C(AT))=r  dim(N(A))=nrdim(N(AT))=mr

  • 矩阵"三秩合一",行秩=列秩=矩阵秩。这个定理的证明都是一些很不直观的证法,很技巧化,不用深究
  • 所谓零空间是指Ax=0的解空间。显然有 d i m ( N ( A ) ) + d i m ( C ( A ) ) = r ( A ) dim(N(A))+dim(C(A))=r(A) dim(N(A))+dim(C(A))=r(A),从而可以得到 d i m ( N ( A ) ) = d i m ( C ( A ) ) − r dim(N(A))=dim(C(A))-r dim(N(A))=dim(C(A))r

正交矩阵

正交矩阵(更合适的说法是正交规范矩阵,因为它不仅要求列列正交,还要求每列的模为1)是比正规矩阵更特殊的矩阵,它要求
Q T Q = Q Q T = I Q^{T} Q=Q Q^{T}=I QTQ=QQT=I
而正规矩阵只要求
Q ∗ Q = Q Q ∗ \mathbf{Q}^{*} \mathbf{Q}=\mathbf{Q} \mathbf{Q}^{*} QQ=QQ

几个特殊的正交矩阵

旋转矩阵与反射矩阵

rotation matrix: reflection matrix:

二维的旋转代表某个点(或者)绕着原点逆时针旋转 θ \theta θ度,三维的旋转代表绕着某个旋转$\theta $度,下面的左式即旋转矩阵

反射矩阵的含义是,使某个向量绕某个与之成 θ 2 \frac{\theta}{2} 2θ射线进行反射
[ cos ⁡ θ − sin ⁡ θ sin ⁡ θ cos ⁡ θ ] [ cos ⁡ θ sin ⁡ θ sin ⁡ θ − cos ⁡ θ ] \left[\begin{array}{cc} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{array}\right] \quad\left[\begin{array}{cc} \cos \theta & \sin \theta \\ \sin \theta & -\cos \theta \end{array}\right] [cosθsinθsinθcosθ][cosθsinθsinθcosθ]

小波矩阵

wavelet matrix:
W 4 = [ 1 1 1 0 1 1 − 1 0 1 − 1 0 1 1 − 1 0 − 1 ] , W 8 = ? W_{4}=\left[\begin{array}{cccc} 1 & 1 & 1 & 0 \\ 1 & 1 & -1 & 0 \\ 1 & -1 & 0 & 1 \\ 1 & -1 & 0 & -1 \end{array}\right], \quad W_{8}=? W4= 1111111111000011 ,W8=?

哈达玛矩阵

Hadamard matrix:

H2为2X2的方阵,H4由H2构造出来,为4X4的矩阵,H8用相同方法构造出来,为8X8的矩阵
H 2 = [ 1 1 1 − 1 ] , H 4 = [ H 2 H 2 H 2 − H 2 ] , H 8 = … H_{2}=\left[\begin{array}{cc} 1 & 1 \\ 1 & -1 \end{array}\right], H_{4}=\left[\begin{array}{cc} H_{2} & H_{2} \\ H_{2} & -H_{2} \end{array}\right], H_{8}=\ldots H2=[1111],H4=[H2H2H2H2],H8=

Householder矩阵

Householder matrix:

其中向量u为一个nX1的模长为1的向量,下面构造出来的就是一个Householder矩阵,注意他其实是一个很特殊的矩阵(正交规范、厄密特对称)
H = I − 2 u u T H=I-2 u u^{T} H=I2uuT

判断矩阵是否正定

Symmetric positive definite matrix S:

  1. All λ i > 0 \lambda_{i}>0 λi>0;
  2. Energy x T S x > 0 x^{T} S x>0 xTSx>0, for x ≠ 0 x \neq 0 x=0;
  3. S = A T A S=A^{T} A S=ATA, columns in A A A are indep.;
  4. All leading determinants > 0 >0 >0;
  5. All pivots in elimination > 0 >0 >0.
### 正规矩阵方法解释及应用 #### 定义与基本特性 正规矩阵是指满足特定条件的一类特殊矩阵。具体来说,对于任意复数域上的\(n\times n\)矩阵\(A\),如果该矩阵与其共轭转置矩阵\(A^*\)的乘积等于它们交换顺序后的乘积,则称此矩阵正规矩阵[^3]。 即\[AA^{*}=A^{*}A\] 这一性质使得正规矩阵拥有一些独特的特征向量和特征值属性,在数值分析、量子力学等领域有着广泛的应用场景[^4]。 #### 应用领域 ##### 数值计算中的稳定性保障 在求解线性方程组或进行特征分解时,使用正规化技术可以有效提高算法的稳定性和准确性。由于正规矩阵能够被对角化,并且其对应的特征向量构成一组标准正交基底,这大大简化了许多复杂运算过程[^1]。 例如,在处理大型稀疏矩阵的情况下,通过对原始数据实施某种形式的正规变换(如Householder反射),可以使后续操作更加高效可靠。 ##### 信号处理中的频谱估计 利用正规矩阵的相关理论可以帮助实现更精确高效的频谱估计。特别是在多通道传感器网络环境中,基于协方差矩阵构建起来的正规结构有助于提取出隐藏于噪声之下的有用信息[^2]。 通过分析这些由观测样本组成的正规矩阵,研究人员可以获得关于目标对象更为清晰的认识,从而指导进一步的数据挖掘工作。 ##### 控制系统设计优化 控制系统的设计往往涉及到状态反馈增益的选择问题。借助正规矩阵的概念框架,工程师们可以在保证闭环极点配置合理性的前提下,寻求最优控制器参数设置方案。 这种方法不仅提高了系统的响应速度和平稳度指标表现,同时也增强了抗干扰能力,确保整个控制回路运行的安全可靠性。 ```python import numpy as np def is_normal_matrix(A): """ 判断给定矩阵是否为正规矩阵 参数: A (numpy.ndarray): 输入待检测的方形矩阵 返回: bool: 若输入矩阵正规矩阵则返回True;反之False. """ try: # 计算 AA* 和 A*A 的差异程度 diff = np.linalg.norm(np.dot(A, A.conj().T)-np.dot(A.conj().T,A)) # 如果两者相差很小,则认为是正规矩阵 return abs(diff)<1e-8 except Exception as e: print(f"Error occurred during checking normality of matrix: {str(e)}") return False # 测试案例 test_mat = np.array([[1., -2.j], [2.j, 5.]]) print(is_normal_matrix(test_mat)) # 输出应为 True 或者 False 取决于 test_mat 是否为正规矩阵 ```
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值