正规矩阵
正规矩阵是很重要也很特殊的一类矩阵,因为它能使得谱定理成立,也一定能够酉相似对角化
在数学中,正规矩阵 (英语: normal matrix)
A
\mathbf{A}
A 是与自己的共轭转置满 足交换律的实系数方块矩阵,也就是说,
A
\mathbf{A}
A 满足
A
∗
A
=
A
A
∗
\mathbf{A}^{*} \mathbf{A}=\mathbf{A} \mathbf{A}^{*}
A∗A=AA∗
其中
A
∗
\mathbf{A}^{*}
A∗ 是
A
\mathbf{A}
A 的共轭转置。
如果
A
\mathbf{A}
A 是实系数矩阵, 则
A
∗
=
A
T
\mathbf{A}^{*}=\mathbf{A}^{T}
A∗=AT, 从而条件简化为
A
T
A
=
A
A
T
\mathbf{A}^{T} \mathbf{A}=\mathbf{A} \mathbf{A}^{T}
ATA=AAT 其 中
A
T
\mathbf{A}^{T}
AT 是
A
\mathbf{A}
A 的转置矩阵。
- 前面说到,一个线性变换可以用矩阵来表示。而正规算子用矩阵来表示,得到的就是一个正规矩阵。任何一个正规矩阵,都是某个正规算子在一组标准正交基下的矩阵;反之,任一正规算子在一组标准正交基下的矩阵都为正规矩阵。从这里看出来,因为正规算子是很稀少的,所以正规矩阵也是很稀少的一种矩阵
- 矩阵的正规性是检验矩阵是否可对角化的一个简便方法: 任意正规矩阵都 可在经过一个酉变换后变为对角矩阵,反过来所有可在经过一个酉变换后 变为对角矩阵的矩阵都是正规矩阵。矩阵可酉相似对角化的充要条件是它为正规矩阵(注意是对角化不是三角化)。还要注意一点,相似对角化的条件很弱(特征向量够多),酉相似对角化的条件很强(需要正规矩阵)
对二阶方阵的一些分析
首先明白一个定理: 任何矩阵都可以通过相似变换变换为上三角矩阵
- 标准形式
Thm. T 2 × 2 ⇒ T ≅ [ a b 0 c ] , b ≥ 0 , uniquely (except a,c may interchange) \text { Thm. } T \quad 2 \times 2 \Rightarrow T \cong\left[\begin{array}{ll} a & b \\ 0 & c \end{array}\right], \mathrm{b} \geq 0 \text {, uniquely (except a,c may interchange) } Thm. T2×2⇒T≅[a0bc],b≥0, uniquely (except a,c may interchange)
- 酉等价
T
1
,
T
2
2
×
2
T_{1}, T_{2} 2 \times 2
T1,T22×2
(i)
T
1
≅
T
2
⇔
T_{1} \cong T_{2} \Leftrightarrow
T1≅T2⇔ same canonical form.
(ii)
T
1
≅
T
2
⇔
tr
T
1
=
tr
T
2
,
tr
T
1
2
=
tr
T
2
2
⏟
↓
&
tr
(
T
1
∗
T
1
)
=
tr
(
T
2
∗
T
2
)
T_{1} \cong T_{2} \Leftrightarrow \underbrace{\operatorname{tr} T_{1}=\operatorname{tr} T_{2}, \operatorname{tr} T_{1}^{2}=\operatorname{tr} T_{2}^{2}}_{\mathbb{\downarrow}} \& \operatorname{tr}\left(T_{1}^{*} T_{1}\right)=\operatorname{tr}\left(T_{2} * T_{2}\right)
T1≅T2⇔↓
trT1=trT2,trT12=trT22&tr(T1∗T1)=tr(T2∗T2)
T
1
,
T
2
T_{1}, T_{2}
T1,T2 same eigenvalues. Hilbert-Schmidt norm same
(Reason:
tr
T
=
\operatorname{tr} T=
trT= sum of eigenvalues of
T
T
T )
(iii)
T
1
≅
T
2
⇔
tr
T
1
=
tr
T
2
,
det
T
1
=
det
T
2
⏟
↓
&
∥
T
1
∥
F
=
∥
T
2
∥
F
T_{1} \cong T_{2} \Leftrightarrow \underbrace{\operatorname{tr} T_{1}=\operatorname{tr} T_{2}, \operatorname{det} T_{1}=\operatorname{det} T_{2}}_{\mathbb{\downarrow}} \&\left\|T_{1}\right\|_{F}=\left\|T_{2}\right\|_{F}
T1≅T2⇔↓
trT1=trT2,detT1=detT2&∥T1∥F=∥T2∥F.
same eigenvalues.
(Reason:
det
T
=
\operatorname{det} T=
detT= product of eigenvalues of
T
T
T )
(iv)
T
1
≅
T
2
⇔
W
(
T
1
)
=
W
(
T
2
)
T_{1} \cong T_{2} \Leftrightarrow W\left(T_{1}\right)=W\left(T_{2}\right)
T1≅T2⇔W(T1)=W(T2).
- 一些数值性质
Def.
T
∈
n
×
n
,
W
(
T
)
=
{
⟨
T
x
,
x
⟩
:
x
∈
C
n
;
∥
x
∥
=
1
}
⊆
C
T \in n \times n, W(T)=\left\{\langle T x, x\rangle: x \in \mathbb{C}^{n} ;\|x\|=1\right\} \subseteq \mathbb{C}
T∈n×n,W(T)={⟨Tx,x⟩:x∈Cn;∥x∥=1}⊆C
Hausdorff-Toeplitz:
W
(
T
)
W(T)
W(T) is convex in
C
\mathbb{C}
C.
Thm. (O. Toeplitz, 1918)
T
=
[
a
b
0
c
]
⇒
W
(
T
)
=
T=\left[\begin{array}{ll}a & b \\ 0 & c\end{array}\right] \Rightarrow W(T)=
T=[a0bc]⇒W(T)= elliptic disc, foci at
a
,
c
a, c
a,c & length of minor axis
=
∣
b
∣
=|\mathrm{b}|
=∣b∣.
即对长度为1的向量来说,用内积<Tx,x>张成的一定是一个凸集。不仅如此,海是一个以a、c为焦点、以b为短轴长度的椭圆
矩阵的四个基本子空间
矩阵 A m × n 的四个基本子空间 : 列空间 C ( A ) ,行空间 C ( A T ) , 零空间 N ( A ) , A T 的零空间 N ( A T ) 若 rank ( A ) = r , 则 dim ( C ( A ) ) = dim ( C ( A T ) ) = r , dim ( N ( A ) ) = n − r , dim ( N ( A T ) ) = m − r \begin{aligned} &\text { 矩阵 } A_{m \times n} \text { 的四个基本子空间 : } \\ &\text { 列空间 } C(A) \text { ,行空间 } C\left(A^{T}\right) \text { , } \\ &\text { 零空间 } N(A) \text { , } A^{T} \text { 的零空间 } N\left(A^{T}\right) \\ &\text { 若 } \operatorname{rank}(A)=r \text { , } \\ &\text { 则 } \operatorname{dim}(C(A))=\operatorname{dim}\left(C\left(A^{T}\right)\right)=r \text { , } \\ &\operatorname{dim}(N(A))=n-r , \operatorname{dim}\left(N\left(A^{T}\right)\right)=m-r \end{aligned} 矩阵 Am×n 的四个基本子空间 : 列空间 C(A) ,行空间 C(AT) , 零空间 N(A) , AT 的零空间 N(AT) 若 rank(A)=r , 则 dim(C(A))=dim(C(AT))=r , dim(N(A))=n−r,dim(N(AT))=m−r
- 矩阵"三秩合一",行秩=列秩=矩阵秩。这个定理的证明都是一些很不直观的证法,很技巧化,不用深究
- 所谓零空间是指Ax=0的解空间。显然有 d i m ( N ( A ) ) + d i m ( C ( A ) ) = r ( A ) dim(N(A))+dim(C(A))=r(A) dim(N(A))+dim(C(A))=r(A),从而可以得到 d i m ( N ( A ) ) = d i m ( C ( A ) ) − r dim(N(A))=dim(C(A))-r dim(N(A))=dim(C(A))−r
正交矩阵
正交矩阵(更合适的说法是正交规范矩阵,因为它不仅要求列列正交,还要求每列的模为1)是比正规矩阵更特殊的矩阵,它要求
Q
T
Q
=
Q
Q
T
=
I
Q^{T} Q=Q Q^{T}=I
QTQ=QQT=I
而正规矩阵只要求
Q
∗
Q
=
Q
Q
∗
\mathbf{Q}^{*} \mathbf{Q}=\mathbf{Q} \mathbf{Q}^{*}
Q∗Q=QQ∗
几个特殊的正交矩阵
旋转矩阵与反射矩阵
rotation matrix: reflection matrix:
二维的旋转代表某个点(或者)绕着原点逆时针旋转 θ \theta θ度,三维的旋转代表绕着某个轴旋转$\theta $度,下面的左式即旋转矩阵
反射矩阵的含义是,使某个向量绕某个与之成
θ
2
\frac{\theta}{2}
2θ射线进行反射
[
cos
θ
−
sin
θ
sin
θ
cos
θ
]
[
cos
θ
sin
θ
sin
θ
−
cos
θ
]
\left[\begin{array}{cc} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{array}\right] \quad\left[\begin{array}{cc} \cos \theta & \sin \theta \\ \sin \theta & -\cos \theta \end{array}\right]
[cosθsinθ−sinθcosθ][cosθsinθsinθ−cosθ]
小波矩阵
wavelet matrix:
W
4
=
[
1
1
1
0
1
1
−
1
0
1
−
1
0
1
1
−
1
0
−
1
]
,
W
8
=
?
W_{4}=\left[\begin{array}{cccc} 1 & 1 & 1 & 0 \\ 1 & 1 & -1 & 0 \\ 1 & -1 & 0 & 1 \\ 1 & -1 & 0 & -1 \end{array}\right], \quad W_{8}=?
W4=
111111−1−11−100001−1
,W8=?
哈达玛矩阵
Hadamard matrix:
H2为2X2的方阵,H4由H2构造出来,为4X4的矩阵,H8用相同方法构造出来,为8X8的矩阵
H
2
=
[
1
1
1
−
1
]
,
H
4
=
[
H
2
H
2
H
2
−
H
2
]
,
H
8
=
…
H_{2}=\left[\begin{array}{cc} 1 & 1 \\ 1 & -1 \end{array}\right], H_{4}=\left[\begin{array}{cc} H_{2} & H_{2} \\ H_{2} & -H_{2} \end{array}\right], H_{8}=\ldots
H2=[111−1],H4=[H2H2H2−H2],H8=…
Householder矩阵
Householder matrix:
其中向量u为一个nX1的模长为1的向量,下面构造出来的就是一个Householder矩阵,注意他其实是一个很特殊的矩阵(正交规范、厄密特对称)
H
=
I
−
2
u
u
T
H=I-2 u u^{T}
H=I−2uuT
判断矩阵是否正定
Symmetric positive definite matrix S:
- All λ i > 0 \lambda_{i}>0 λi>0;
- Energy x T S x > 0 x^{T} S x>0 xTSx>0, for x ≠ 0 x \neq 0 x=0;
- S = A T A S=A^{T} A S=ATA, columns in A A A are indep.;
- All leading determinants > 0 >0 >0;
- All pivots in elimination > 0 >0 >0.