1. 正交矩阵 (Orthogonal Matrix)
- 定义:一个方阵 Q 是正交的,当且仅当
,其中
是 Q 的转置,I 是单位矩阵。
- 性质:
- 列向量和行向量都是正交单位向量。
- 正交矩阵的逆等于其转置:
- 保持内积和向量的长度。
2. 正规矩阵 (Normal Matrix)
- 定义:一个矩阵 A 是正规矩阵,当且仅当
,其中
是 A 的共轭转置。
- 性质:
- 包含所有对角化矩阵(例如,酉矩阵和对称矩阵)。
- 可以通过酉矩阵对角化。
3. 实对称矩阵 (Real Symmetric Matrix)
- 定义:一个方阵 A 是实对称的,当且仅当
。
- 性质:
- 所有特征值为实数,且有正交特征向量。
- 可以被对角化为实对角矩阵。
4. 反对称矩阵 (Skew-Symmetric Matrix)
- 定义:一个方阵 A 是反对称的,当且仅当
。
- 性质:
- 对角线上的元素全为零。
- 特征值为纯虚数(成对出现)。
5. 酉矩阵 (Unitary Matrix)
- 定义:一个方阵 U 是酉的,当且仅当
,其中
是 U 的共轭转置。
- 性质:
- 列向量和行向量都是正交的复数单位向量。
- 保持内积和向量的长度。
6. Hermite矩阵 (Hermitian Matrix)
- 定义:一个方阵 A 是 Hermite 的,当且仅当
。
- 性质:
- 所有特征值为实数,且有正交特征向量。
- 可以被对角化为复对角矩阵。
7. 反Hermite矩阵 (Skew-Hermitian Matrix)
- 定义:一个方阵 A 是反Hermite的,当且仅当
。
- 性质:
- 特征值为纯虚数(成对出现)。
区别和联系
- 正交矩阵与酉矩阵:正交矩阵是实数域的酉矩阵,二者的性质相似但定义域不同。
- 实对称矩阵与Hermite矩阵:实对称矩阵是实数域的Hermite矩阵,特征值和特征向量性质相同。
- 反对称矩阵与反Hermite矩阵:反对称矩阵是实数域的反Hermite矩阵,特征值性质相似。
- 正规矩阵:包含了正交矩阵、酉矩阵、实对称矩阵和Hermite矩阵等。