【矩阵论】2. 矩阵分解——正规分解——正规阵

矩阵论的所有文章,主要内容参考北航赵迪老师的课件

[注]由于矩阵论对计算机比较重要,所以选修了这门课,但不是专业搞数学的,所以存在很多口语化描述,而且对很多东西理解不是很正确与透彻,欢迎大家指正。我可能间歇性忙,但有空一定会回复修改的。

矩阵论
1. 准备知识——复数域上矩阵,Hermite变换)
1.准备知识——复数域上的内积域正交阵
1.准备知识——Hermite阵,二次型,矩阵合同,正定阵,幂0阵,幂等阵,矩阵的秩
2. 矩阵分解——SVD准备知识——奇异值
2. 矩阵分解——SVD
2. 矩阵分解——QR分解
2. 矩阵分解——正定阵分解
2. 矩阵分解——单阵谱分解
2. 矩阵分解——正规分解——正规阵
2. 矩阵分解——正规谱分解
2. 矩阵分解——高低分解
3. 矩阵函数——常见解析函数
3. 矩阵函数——谱公式,幂0与泰勒计算矩阵函数
3. 矩阵函数——矩阵函数求导
4. 矩阵运算——观察法求矩阵特征值特征向量
4. 矩阵运算——张量积
4. 矩阵运算——矩阵拉直
4.矩阵运算——广义逆——加号逆定义性质与特殊矩阵的加号逆
4. 矩阵运算——广义逆——加号逆的计算
4. 矩阵运算——广义逆——加号逆应用
4. 矩阵运算——广义逆——减号逆
5. 线性空间与线性变换——线性空间
5. 线性空间与线性变换——生成子空间
5. 线性空间与线性变换——线性映射与自然基分解,线性变换
6. 正规方程与矩阵方程求解
7. 范数理论——基本概念——向量范数与矩阵范数
7.范数理论——基本概念——矩阵范数生成向量范数&谱范不等式
7. 矩阵理论——算子范数
7.范数理论——范数估计——许尔估计&谱估计
7. 范数理论——非负/正矩阵
8. 常用矩阵总结——秩1矩阵,优阵(单位正交阵),Hermite阵
8. 常用矩阵总结——镜面阵,正定阵
8. 常用矩阵总结——单阵,正规阵,幂0阵,幂等阵,循环阵


矩阵分解可以得到简化的乘积矩阵,可以简化后续的计算与处理度

在这里插入图片描述

2.4.3 正规阵

a. 定义

若方阵A满足 A H A = A A H A^HA=AA^H AHA=AAH ,则A为正规阵

正规条件: A H A = A A H A^HA=AA^H AHA=AAH

b. 正规阵特点
  1. 正规阵必为方阵 ( A H A 与 A A H A^HA与AA^H AHAAAH 的阶数相等,即行列数相等)
  2. A 正规    ⟺    A H 正规 A正规\iff A^H正规 A正规AH正规 A 不正规    ⟺    A H 不正规 A不正规\iff A^H不正规 A不正规AH不正规
c. 常见正规阵
对角阵

对角阵 A = ( a 1 ⋱ a n ) A=\left(\begin{matrix}a_1&&\\&\ddots&\\&&a_n\end{matrix}\right) A= a1an 必正规

三角正规阵必对角

若三角阵 B = ( b 1 b 12 ⋯ b 1 n b 2 ⋯ b 2 n ⋱ b n ) B=\left(\begin{matrix}b_{1}&b_{12}&\cdots&b_{1n}\\&b_{2}&\cdots&b_{2n}\\&&\ddots&\\&&&b_n\end{matrix}\right) B= b1b12b2b1nb2nbn 正规,则 B = ( b 1 b 2 ⋱ b n ) B=\left(\begin{matrix}b_1&&&\\&b_2&&\\&&\ddots&\\&&&b_n\end{matrix}\right) B= b1b2bn 为对角形

证明:严格三角阵不是正规阵
设 B = ( b 1 b 12 b 13 b 2 b 23 b 3 ) 为正规阵, B H = ( b 1 ‾ b 12 ‾ b 2 ‾ b 13 ‾ b 23 ‾ b 3 ‾ ) B B H = ( b 1 b 12 b 13 b 2 b 23 b 3 ) ( b 1 ‾ b 12 ‾ b 2 ‾ b 13 ‾ b 23 ‾ b 3 ‾ ) = ( ∣ b 1 ∣ 2 + ∣ b 12 ∣ 2 + ∣ b 13 ∣ 2 ∣ b 23 ∣ 2 + ∣ b 2 ∣ 2 ∣ b 3 ∣ 2 ) B H B = ( b 1 ‾ b 12 ‾ b 2 ‾ b 13 ‾ b 23 ‾ b 3 ‾ ) ( b 1 b 12 b 13 b 2 b 23 b 3 ) = ( ∣ b 1 ∣ 2 ∣ b 12 ∣ 2 + ∣ b 2 ∣ 2 ∣ b 13 ∣ 2 + ∣ b 23 ∣ 2 + ∣ b 3 ∣ 2 ) , 若 B 满足正规阵,则 B H B = B B H , 即 ⇒ { ∣ b 1 ∣ 2 = ∣ b 1 ∣ 2 + ∣ b 12 ∣ 2 + ∣ b 13 ∣ 2 ∣ b 12 ∣ 2 + ∣ b 2 ∣ 2 = ∣ b 23 ∣ 2 + ∣ b 2 ∣ 2 ∣ b 3 ∣ 2 = ∣ b 13 ∣ 2 + ∣ b 23 ∣ 2 + ∣ b 3 ∣ 2 ⇒ { ∣ b 12 ∣ 2 = 0 ∣ b 13 ∣ 2 = 0 ∣ b 23 ∣ 2 = 0 ⇒ b 12 = b 13 = b 23 = 0 ,即 B = ( b 1 b 2 b 3 ) 为对角形 \begin{aligned} &设B=\left( \begin{matrix} b_1&b_{12}&b_{13}\\ &b_2&b_{23}\\ &&b_{3} \end{matrix} \right)为正规阵,B^H=\left( \begin{matrix} \overline{b_1}&&\\ \overline{b_{12}}&\overline{b_2}&\\ \overline{b_{13}}&\overline{b_{23}}&\overline{b_3} \end{matrix} \right)\\ &BB^H=\left( \begin{matrix} b_1&b_{12}&b_{13}\\ &b_2&b_{23}\\ &&b_{3} \end{matrix} \right)\left( \begin{matrix} \overline{b_1}&&\\ \overline{b_{12}}&\overline{b_2}&\\ \overline{b_{13}}&\overline{b_{23}}&\overline{b_3} \end{matrix} \right)\\ &=\left( \begin{matrix} \vert b_1 \vert^2+\vert b_{12} \vert^2+\vert b_{13} \vert^2 &&\\ &\vert b_{23} \vert^2+\vert b_2 \vert^2&\\ &&\vert b_3 \vert^2 \end{matrix} \right)\\ &B^HB=\left( \begin{matrix} \overline{b_1}&&\\ \overline{b_{12}}&\overline{b_2}&\\ \overline{b_{13}}&\overline{b_{23}}&\overline{b_3} \end{matrix} \right)\left( \begin{matrix} b_1&b_{12}&b_{13}\\ &b_2&b_{23}\\ &&b_{3} \end{matrix} \right)\\ &=\left( \begin{matrix} \vert b_1\vert^2 &&\\ &\vert b_{12}\vert^2+\vert b_2\vert^2&\\ &&\vert b_{13}\vert^2+\vert b_{23}\vert^2+\vert b_{3}\vert^2 \end{matrix} \right),\\ &若B满足正规阵,则B^HB=BB^H,即\\ &\Rightarrow \left\{ \begin{aligned} \vert b_1\vert^2 = \vert b_1 \vert^2+\vert b_{12} \vert^2+\vert b_{13} \vert^2\\ \vert b_{12}\vert^2+\vert b_2\vert^2=\vert b_{23} \vert^2+\vert b_2 \vert^2\\ \vert b_3 \vert^2=\vert b_{13}\vert^2+\vert b_{23}\vert^2+\vert b_{3}\vert^2 \end{aligned} \right.\Rightarrow \left\{ \begin{aligned} \vert b_{12} \vert^2=0\\ \vert b_{13} \vert^2=0\\ \vert b_{23} \vert^2=0 \end{aligned} \right.\\ &\Rightarrow b_{12}=b_{13}=b_{23}=0,即B=\left( \begin{matrix} b_{1}&&\\ &b_{2}&\\ &&b_{3} \end{matrix} \right)为对角形 \end{aligned} B= b1b12b2b13b23b3 为正规阵,BH= b1b12b13b2b23b3 BBH= b1b12b2b13b23b3 b1b12b13b2b23b3 = b12+b122+b132b232+b22b32 BHB= b1b12b13b2b23b3 b1b12b2b13b23b3 = b12b122+b22b132+b232+b32 ,B满足正规阵,则BHB=BBH, b12=b12+b122+b132b122+b22=b232+b22b32=b132+b232+b32 b122=0b132=0b232=0b12=b13=b23=0,即B= b1b2b3 为对角形

若分块阵 A = ( B C 0 D ) A=\left(\begin{matrix} B&C\\0&D \end{matrix}\right) A=(B0CD) 正规,则 C = 0 C=0 C=0 ,且 B , D B,D BD 都正规,即 A = ( B 0 0 D ) A=\left(\begin{matrix} B&0\\0&D \end{matrix}\right) A=(B00D)
A H A = ( B H 0 C H D H ) ( B C 0 D ) = ( B H B B H C C H B C H C + D H D ) A A H = ( B C 0 D ) ( B H 0 C H D H ) = ( B B H + C C H C D H D C H C H C + D D H ) 由于 t r ( A H A ) = t r ( A A H ) , ∴ t r ( C C H ) = 0 , 利用迹公式可写 t r ( C C H ) = ∑ ∣ c i , j ∣ 2 = 0 ,其中 C = ( c i , j ) , C 为零阵 且 B B H = B H B , D D H = D H D \begin{aligned} &A^HA=\left( \begin{matrix} B^H&0\\ C^H&D^H \end{matrix} \right)\left( \begin{matrix} B&C\\ 0&D \end{matrix} \right)=\left( \begin{matrix} B^HB&B^HC\\ C^HB&C^HC+D^HD \end{matrix} \right)\\ &AA^H=\left( \begin{matrix} B&C\\ 0&D \end{matrix} \right)\left( \begin{matrix} B^H&0\\ C^H&D^H \end{matrix} \right)=\left( \begin{matrix} BB^H+CC^H&CD^H\\ DC^H&C^HC+DD^H \end{matrix} \right)\\ &由于tr(A^HA)=tr(AA^H),\therefore tr(CC^H)=0,\\ &利用迹公式可写tr(CC^H)=\sum \vert c_{i,j} \vert^2=0,其中C=(c_{i,j}),C为零阵\\ &且BB^H=B^HB,DD^H=D^HD \end{aligned} AHA=(BHCH0DH)(B0CD)=(BHBCHBBHCCHC+DHD)AAH=(B0CD)(BHCH0DH)=(BBH+CCHDCHCDHCHC+DDH)由于tr(AHA)=tr(AAH),tr(CCH)=0,利用迹公式可写tr(CCH)=ci,j2=0,其中C=(ci,j)C为零阵BBH=BHB,DDH=DHD
由证明过程可见,严格三角阵为非正规阵

H阵与斜H阵

Hermite阵与斜Hermite阵必正规
若 A 是 H e r m i t e 阵,则 A H = A , A H A = A A = A A H \begin{aligned} 若A是Hermite阵,则A^H=A,A^HA=AA=AA^H \end{aligned} AHermite阵,则AH=AAHA=AA=AAH

  • 实对称阵与反对称阵都是正规阵
优阵

优阵必正规(实正交阵)
A H A = I = A A H \begin{aligned} A^HA=I=AA^H \end{aligned} AHA=I=AAH

e. 正规阵的构造方法
倍数法则

A A A 正规,取倍数 k k k ,则 k A kA kA 为正规阵

( 0 i i i 0 i i i i ) = i ( 0 1 1 1 0 1 1 1 1 ) , ( i i i 2 i ) = i ( 1 1 1 2 ) 都是正规阵 A = 1 2 ( i 1 1 i ) 为正规 U 阵,则 2 A = ( i 1 1 i ) \begin{aligned} \left( \begin{matrix} 0&i&i\\ i&0&i\\ i&i&i \end{matrix} \right)=i\left( \begin{matrix} 0&1&1\\ 1&0&1\\ 1&1&1 \end{matrix} \right),\left( \begin{matrix} i&i\\ i&2i \end{matrix} \right)=i\left( \begin{matrix} 1&1\\1&2 \end{matrix} \right)都是正规阵\\ A=\frac{1}{\sqrt{2}}\left( \begin{matrix} i&1\\ 1&i \end{matrix} \right)为正规U阵,则\sqrt{2}A=\left( \begin{matrix} i&1\\ 1&i \end{matrix} \right) \end{aligned} 0iii0iiii =i 011101111 ,(iii2i)=i(1112)都是正规阵A=2 1(i11i)为正规U阵,则2 A=(i11i)

平移法则

A A A 正规,则 A ± c I A\pm cI A±cI 正规

若 A 是正规阵,则 ( A ± c I ) H ( A ± c I ) = ( A H ± c I ) ( A ± c I ) = A H A ± c A H ± c A + c 2 I = A A H ± c A ± c A H + c 2 I = ( A ± c I ) ( A H ± c I ) \begin{aligned} 若A是正规阵,则(A\pm cI)^H(A\pm cI)&=(A^H\pm cI)(A\pm cI)\\ &=A^HA\pm cA^H\pm cA+c^2I\\ &=AA^H\pm cA\pm cA^H+c^2I\\ &=(A\pm cI)(A^H\pm cI) \end{aligned} A是正规阵,则(A±cI)H(A±cI)=(AH±cI)(A±cI)=AHA±cAH±cA+c2I=AAH±cA±cAH+c2I=(A±cI)(AH±cI)

优相似

A A A 正规,则 Q H A Q Q^HAQ QHAQ 也正规,其中 Q Q Q 为优阵( Q H = Q − 1 Q^H=Q^{-1} QH=Q1),即正规阵的优相似阵一定正规

证明:
∵ A H A = A A H ,且存在 U 阵 Q ,使得 Q H A Q = B ,即证 B H B = B B H B H B = ( Q H A Q ) H ( Q H A Q ) = Q H A H Q Q H A Q = Q H A H A Q B B H = ( Q H A Q ) ( Q A Q H ) H = Q H A Q Q H A H Q = Q H A A H Q = A A H = A H A Q H A H A Q ∴ B H B = B B H , B 为正规阵 \begin{aligned} &\because A^HA=AA^H,且存在U阵Q,使得Q^HAQ=B,即证B^HB=BB^H\\ &B^HB=(Q^HAQ)^H(Q^HAQ)=Q^HA^HQQ^HAQ=Q^HA^HAQ\\ &BB^H=(Q^HAQ)(QAQ^H)^H=Q^HAQQ^HA^HQ=Q^HAA^HQ\overset{AA^H=A^HA}{=}Q^HA^HAQ\\ &\therefore B^HB=BB^H,B为正规阵 \end{aligned} AHA=AAH,且存在UQ,使得QHAQ=B,即证BHB=BBHBHB=(QHAQ)H(QHAQ)=QHAHQQHAQ=QHAHAQBBH=(QHAQ)(QAQH)H=QHAQQHAHQ=QHAAHQ=AAH=AHAQHAHAQBHB=BBH,B为正规阵

多项式正规

若 A 正规,则 f ( A ) = λ 0 I + λ 1 A + λ 2 A 2 + ⋯ + λ n A K f(A)=\lambda_0I+\lambda_1A+\lambda_2A^2+\cdots+\lambda_nA^K f(A)=λ0I+λ1A+λ2A2++λnAK 正规

f. 正规阵与其H阵的特征向量相同

若A正规,则 A H A^H AH 与 A 有相同的向量

若 A 正规,且 A X = λ X ,则 A H X = λ ‾ X \begin{aligned} 若A正规,且AX=\lambda X,则A^HX=\overline{\lambda}X \end{aligned} A正规,且AX=λX,则AHX=λX

证明
只需证 ( A H − λ ‾ I ) X = 0 , 即 ( A − λ I ) H X = 0 , 由 ( A − λ I ) X = 0 ∣ A − λ I ∣ 2 = 0 ⇒ ( ( A − λ I ) X ) H ( A − λ I ) X = 0 ⇒ X H ( A − λ I ) H ( A − λ I ) X = 0 由于 A − λ I 正规, ( A − λ I ) H ( A − λ I ) = ( A − λ I ) ( A − λ I ) H 即有 X H ( ( A − λ I ) H ) H ( A − λ I ) H X = 0 ⇒ ( ( A − λ I ) H X ) H ( A − λ I ) H X = ∣ ( A − λ I ) H X ∣ 2 = 0 ⇒ ( A − λ I ) H X = 0 ⇒ ( A H − λ ‾ I ) X = 0 ⇒ A H X = λ ‾ X 故结论得证,若 A 正规,则 A X = λ X    ⟺    A H X = λ ‾ X 其中,若 λ ( A ) = { λ 1 , ⋯   , λ n } , 则 λ ( A H ) = { λ 1 ‾ , ⋯   , λ n ‾ } \begin{aligned} &只需证 (A^H-\overline{\lambda}I)X=0,即(A-\lambda I)^HX=0,由(A-\lambda I)X=0\\ &\vert A-\lambda I \vert^2=0\Rightarrow ((A-\lambda I)X)^H(A-\lambda I)X=0\Rightarrow X^H(A-\lambda I)^H(A-\lambda I)X=0\\ &由于A-\lambda I 正规,(A-\lambda I)^H(A-\lambda I)=(A-\lambda I)(A-\lambda I)^H\\ &即有 X^H((A-\lambda I)^H)^H(A-\lambda I)^HX=0\\ &\Rightarrow ((A-\lambda I)^HX)^H(A-\lambda I)^HX=\vert (A-\lambda I)^HX\vert^2=0\\ &\Rightarrow (A-\lambda I)^HX=0\Rightarrow (A^H-\overline{\lambda}I)X=0\Rightarrow A^HX=\overline{\lambda}X\\ &故结论得证,若A正规,则AX=\lambda X\iff A^HX=\overline{\lambda}X\\ &其中,若\lambda(A)=\{\lambda_1,\cdots,\lambda_n\},则\lambda(A^H)=\{\overline{\lambda_1},\cdots,\overline{\lambda_n}\} \end{aligned} 只需证(AHλI)X=0,(AλI)HX=0,(AλI)X=0AλI2=0((AλI)X)H(AλI)X=0XH(AλI)H(AλI)X=0由于AλI正规,(AλI)H(AλI)=(AλI)(AλI)H即有XH((AλI)H)H(AλI)HX=0((AλI)HX)H(AλI)HX=(AλI)HX2=0(AλI)HX=0(AHλI)X=0AHX=λX故结论得证,若A正规,则AX=λXAHX=λX其中,若λ(A)={λ1,,λn},λ(AH)={λ1,,λn}

2.4.4 正规分解定理

正规阵 ⊂ 单阵 正规阵\subset 单阵 正规阵单阵

(相似对角化)若 A = A n × n A=A_{n\times n} A=An×n 正规,则存在U阵Q,使 Q H A Q = Λ = ( λ 1 ⋱ λ n ) Q^HAQ=\Lambda=\left(\begin{matrix}\lambda_1&&\\&\ddots&\\&&\lambda_n\end{matrix}\right) QHAQ=Λ= λ1λn

证明
设 A = A n × n 正规,由 U 相似定理, Q H A Q 正规,由许尔公式,存在 U 阵 Q ,使 Q H A Q = D = ( λ 1 ∗ ⋱ λ n ) 为上三角阵 D = Q H A Q 为正规三角阵,由 " 正规三角定理 " 可知 D 为对角阵 即 Q − 1 A Q = D = ( λ 1 ⋱ λ n ) 成立 \begin{aligned} &设A=A_{n\times n} 正规,由U相似定理,Q^HAQ正规,由许尔公式,存在U阵Q,使\\ &Q^HAQ=D=\left( \begin{matrix} \lambda_1&&*\\ &\ddots&\\ &&\lambda_n \end{matrix} \right)为上三角阵\\ &D=Q^HAQ为正规三角阵,由 "正规三角定理" 可知D为对角阵\\ &即Q^{-1}AQ=D=\left( \begin{matrix} \lambda_1&&\\ &\ddots&\\ &&\lambda_n \end{matrix} \right)成立 \end{aligned} A=An×n正规,由U相似定理,QHAQ正规,由许尔公式,存在UQ,使QHAQ=D= λ1λn 为上三角阵D=QHAQ为正规三角阵,由"正规三角定理"可知D为对角阵Q1AQ=D= λ1λn 成立

a. 正规阵A恰有n个正交特向

由 Q − 1 A Q = D = ( λ 1 ⋱ λ n ) ⇒ A Q = Q D ⇒ A ( q 1 , ⋯   , q n ) = ( q 1 , ⋯   , q n ) D ⇒ ( A q 1 , ⋯   , A q n ) = ( λ 1 q 1 , ⋯   , λ n q n ) U 阵 Q 为 A 的特征向量组成的矩阵,且 n 个特征向量相互正交, q 1 ⊥ ⋯ ⊥ q n \begin{aligned} &由Q^{-1} AQ=D=\left( \begin{matrix} \lambda_1&&\\ &\ddots&\\ &&\lambda_n \end{matrix} \right)\Rightarrow AQ=QD\\&\Rightarrow A\left(q_1,\cdots,q_n\right)=\left(q_1,\cdots,q_n\right)D\\ &\Rightarrow\left(Aq_1,\cdots,Aq_n\right)=\left(\lambda_1q_1,\cdots,\lambda_nq_n\right)\\ &U阵Q为A的特征向量组成的矩阵,且n个特征向量相互正交,q_1\bot \cdots \bot q_n \end{aligned} Q1AQ=D= λ1λn AQ=QDA(q1,,qn)=(q1,,qn)D(Aq1,,Aqn)=(λ1q1,,λnqn)UQA的特征向量组成的矩阵,且n个特征向量相互正交,q1qn

b. 正规分解方法
  1. 先令特征根 λ 1 , ⋯   , λ n \lambda_1,\cdots,\lambda_n λ1,,λn ,求正交特征向量 X 1 ⊥ ⋯ ⊥ X n X_1\bot \cdots \bot X_n X1Xn

  2. 令U阵 Q = ( q 1 , ⋯   , q n ) = ( X 1 ∣ X 1 ∣ , ⋯   , X n ∣ X n ∣ ) Q=\left(q_1,\cdots,q_n\right)=\left(\frac{X_1}{\vert X_1\vert},\cdots,\frac{X_n}{\vert X_n \vert}\right) Q=(q1,,qn)=(X1X1,,XnXn)

    则有U相似阵 Q H A Q = D = ( λ 1 ⋱ λ n ) Q^HAQ=D=\left(\begin{matrix}\lambda_1&&\\&\ddots&\\&&\lambda_n\end{matrix}\right) QHAQ=D= λ1λn 为对角阵

  3. 可写正规分解 A = Q D Q H A=QDQ^H A=QDQH

定义法

对矩阵 A = ( 1 − 1 1 0 ) A=\left(\begin{matrix} 1&-1\\1&0\end{matrix}\right) A=(1110) 正规分解
A = ( 1 − 1 1 0 ) 为正规阵,计算可得 λ 1 = i , λ 2 = − i , X 1 = ( i 1 ) , X 2 = ( 1 i ) , 且 X 1 与 X 2 为不同特征值的特征向量,所以 X 1 ⊥ X 2 令 U 阵 Q = ( X 1 ∣ X 1 ∣ , X 2 ∣ X 2 ∣ ) = 1 2 ( i 1 1 i ) , 可得 Q H A Q = D = ( i − i ) 则有正规分解 A = Q D Q H = 1 2 ( i 1 1 i ) ( i − i ) 1 2 ( − i 1 1 − i ) \begin{aligned} &A=\left( \begin{matrix} 1&-1\\ 1&0 \end{matrix} \right)为正规阵,计算可得\lambda_1=i,\lambda_2=-i,X_1=\left( \begin{matrix} i\\1 \end{matrix} \right),X_2=\left( \begin{matrix} 1\\i \end{matrix} \right),\\ &且X_1与X_2为不同特征值的特征向量,所以X_1\bot X_2\\ &令U阵Q=\left( \begin{matrix} \frac{X_1}{\vert X_1\vert},\frac{X_2}{\vert X_2\vert} \end{matrix} \right)=\frac{1}{\sqrt{2}}\left( \begin{matrix} i&1\\ 1&i \end{matrix} \right),可得Q^HAQ=D=\left( \begin{matrix} i&\\ &-i \end{matrix} \right)\\ &则有正规分解 A=QDQ^H=\frac{1}{\sqrt{2}}\left( \begin{matrix} i&1\\ 1&i \end{matrix} \right)\left( \begin{matrix} i&\\ &-i \end{matrix} \right)\frac{1}{\sqrt{2}}\left( \begin{matrix} -i&1\\ 1&-i \end{matrix} \right) \end{aligned} A=(1110)为正规阵,计算可得λ1=i,λ2=iX1=(i1),X2=(1i),X1X2为不同特征值的特征向量,所以X1X2UQ=(X1X1,X2X2)=2 1(i11i),可得QHAQ=D=(ii)则有正规分解A=QDQH=2 1(i11i)(ii)2 1(i11i)

平移法

令 B = ( 1 − 1 1 1 ) = I + A = ( 1 1 ) + ( 0 − 1 1 0 ) , 其中 A 为正规 U 阵 λ ( B ) = { λ 1 , λ 2 } = { 1 + i , 1 − i } , X 1 = ( i 1 ) , X 2 = ( 1 i ) , 得 U 阵 Q = ( X 1 ∣ X 1 ∣ , X 2 ∣ X 2 ∣ ) = 1 2 ( i 1 1 i ) ,故有正规分解 A = Q D Q H = 1 2 ( i 1 1 i ) ( 1 + i 1 − i ) 1 2 ( − i 1 1 − i ) \begin{aligned} &令B=\left( \begin{matrix} 1&-1\\ 1&1 \end{matrix} \right)=I+A=\left( \begin{matrix} 1&\\ &1 \end{matrix} \right)+\left( \begin{matrix} 0&-1\\ 1&0 \end{matrix} \right),其中A为正规U阵\\ &\lambda(B)=\{\lambda_1,\lambda_2\}=\{1+i,1-i\},X_1=\left( \begin{matrix} i\\1 \end{matrix} \right),X_2=\left( \begin{matrix} 1\\i \end{matrix} \right),\\ &得U阵Q=\left(\frac{X_1}{\vert X_1\vert},\frac{X_2}{\vert X_2\vert}\right)=\frac{1}{\sqrt{2}}\left( \begin{matrix} i&1\\ 1&i \end{matrix} \right),故有正规分解A=QDQ^H\\ &=\frac{1}{\sqrt{2}}\left( \begin{matrix} i&1\\ 1&i \end{matrix} \right)\left( \begin{matrix} 1+i&\\ &1-i \end{matrix} \right)\frac{1}{\sqrt{2}}\left( \begin{matrix} -i&1\\ 1&-i \end{matrix} \right) \end{aligned} B=(1111)=I+A=(11)+(0110),其中A为正规Uλ(B)={λ1,λ2}={1+i,1i},X1=(i1),X2=(1i),UQ=(X1X1,X2X2)=2 1(i11i),故有正规分解A=QDQH=2 1(i11i)(1+i1i)2 1(i11i)

  • 1
    点赞
  • 9
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 2
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

AmosTian

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值