如何理解贝叶斯概率公式的先验、后验以及似然

贝叶斯概率公式最简单的情况:

P(A|B)=P(B|A)*P(A)/P(B)

关于如何理解/ 记住贝叶斯公式里的先验、后验以及似然。有一个关于编译器的巧妙的例子:

假设今天Alice结束了漫长的期末复习周,准备打开电脑准备半个月前的代码工作,结果发现程序出现了重大错误,那么Alice遇到的问题最有可能是什么导致的呢?

P(A|B)=P(B|A)*P(A) / P(B)中,有以下4点:

  • P(A) 表示(A的)先验
  • P(B|A) 表示似然
  • P(A|B) 表示要计算的后验
  • 计算、估算P(A|B)后验概率的习惯是略去分母那个P(B)

如果你分不清以上4点没关系,我们往下看:

  1. 如何理解后验概率P(A|B)

    如果把程序出错这个事情记为“结果”,也就是B,拥有最大P(A|B)的那个原因A,就是导致程序出错的原因。

    因此,计算后验概率就是事情发生后,找原因用的,在程序已经出错的情况下,找到最有可能的原因。

  2. 如何理解似然概率P(B|A)

    Alice没有去计算P(A|B)后验概率,她一口咬定导致程序出错的原因是:编译器坏掉啦。Bob问为什么你要这样认为呢?Alice说:因为编译器坏了的话,程序一定会出错啊

    Alice说的没错耶,编译器坏了的话,事件B,也就是程序一定会出错。这里Alice考虑的是似然概率,也就是Alice把“编译器坏了”作为事件A,A发生的条件下,B发生的概率几乎是100%

  3. 如何理解先验概率P(A)

    Bob觉得不对劲,想了半天说:可是编译器突然坏掉的概率很小耶

    Bob说这句话是考虑了先验概率P(A)之所以称为"先验"是因为它不考虑任何B方面的因素,天王老子来了编译器突然坏掉的概率也是极低的。更何况B发生与否。

  4. All in all
    因此,用贝叶斯的角度去考虑问题:P(A|B)=P(B|A)*P(A) / P(B)
    最先进的地方就体现在,不仅仅使用了Alice的似然,而且使用了Bob的“先验概率”,考虑了A本身发生的概率。得出后验的结果。

其他的不再赘述,牢牢记住编译器的例子可以有助于(至少是我)记住这个该死的公式。

### 回答1: 贝叶斯估计和最大估计都是概率统计中的常见方法,它们在统计学和机器学习中都有广泛的应用。 贝叶斯估计和最大估计都是用来估计概率分布中的参数的方法。其中,最大估计是根据样本数据来确定参数值,使得这些参数下的样本出现的概率最大;而贝叶斯估计则考虑了先验概率和后概率,根据贝叶斯公式计算得到参数的后分布,进而计算参数的期望值或最大后概率。 最大估计通常用于数据量大、数据质量高、先验知识较少的情况下,是一个无偏估计;而贝叶斯估计则可以考虑先验知识,并对参数的不确定性进行建模,可以更加准确地估计参数值,但需要对先验分布进行假设,且计算比较复杂。 因此,在实际应用中,选择哪种方法取决于数据的性质、先验知识以及需要的精度等因素。 ### 回答2: 贝叶斯估计和最大估计是统计学中常用的两种参数估计方法,它们的主要差异体现在以下几个方面: 1. 假设的不同:贝叶斯估计方法假设参数是一个未知的随机变量,而最大估计方法认为参数是一个确定的值。 2. 参数的表示方式:贝叶斯估计方法将参数表示为一个概率分布,即参数的后分布,而最大估计方法将参数表示为一个点估计,即参数的估计值。 3. 数据处理:最大估计方法只利用样本数据本身的统计特性来估计参数,而贝叶斯估计方法结合了先验信息和样本数据的统计特性进行参数估计。 4. 置信区间的计算:最大估计方法主要关注参数的点估计,不涉及参数的置信区间的计算。而贝叶斯估计方法可以通过后分布计算参数的置信区间。 5. 估计的稳定性:贝叶斯估计方法可以通过引入先验信息来提高参数估计的稳定性,尤其在样本数据较少或者噪声较大的情况下有较好的表现。而最大估计方法对于不满足大样本条件或者出现过拟合等问题时,估计结果可能不稳定。 综上所述,贝叶斯估计和最大估计在估计方法的假设、参数表示方式、数据处理、置信区间计算以及估计的稳定性等方面存在差异。具体选择哪种方法取决于问题的背景和数据的特点。 ### 回答3: 贝叶斯估计和最大估计是两种常用的参数估计方法,它们有着一些显著的差异。 首先,贝叶斯估计和最大估计的目标不同。最大估计的目标是找到一个使得已观测数据在该参数下的概率最大化的参数值。而贝叶斯估计不仅关注已观测数据,还引入了先验概率,利用先验信息来更新参数的估计。 其次,贝叶斯估计得到的结果是一个后分布,而最大估计得到的结果是一个点估计。贝叶斯估计通过贝叶斯定理将先验概率函数相结合,得到参数的后分布。这个后分布能够在不同的先验信息下进行不同方案的比较,并提供了更全面的信息。而最大估计只给出一个点估计,无法提供参数的不确定性度量。 另外,贝叶斯估计不仅关注已观测数据,也关注参数本身。它可以通过引入先验概率来减小数据量小的情况下参数估计的方差。而最大估计则仅仅关注已观测数据,忽略了参数本身的信息。 最后,贝叶斯估计需要指定先验概率,而最大估计不需要。选择先验概率贝叶斯估计中的一个关键问题,它可以根据领域知识或者过去的经来确定。但是如果选择不当,会导致结果出现偏差。 综上所述,贝叶斯估计和最大估计在目标、结果形式、参数不确定性度量和先验概率等方面存在差异。选择哪种估计方法应根据具体问题和可用信息的性质来决定。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值