三相并网逆变器PI控制——离网模式

三相并网逆变器离网控制

逆变器并离网控制基本区别

  三相并网逆变器并网状态下,其主要功能是向大电网输送电能。此时系统并网点电压被大电网钳位,因此只需控制逆变器输出满足功率要求的电流,即可实现控制目标,故该状态下并网逆变器一般等效为电流源

  三相并网逆变器离网运行状态下,其主要功能是输出满足负荷运行条件的电压,此时系统输出电流全部由负载自身参数决定。因此该状态下并网逆变器一般等效为电压源

离网逆变器基本拓扑结构

  下图为离网状态下的逆变器拓扑结构,这里用纯电阻代替纯阻性负载:

在这里插入图片描述

  以逆变器指向负载电流方向为电流参考正方向,即图中 i a i_{a} ia所指方向为正方向。

{ U a − L d i a d t − i a R − U C a = 0 U b − L d i b d t − i b R − U C b = 0 U c − L d i c d t − i c R − U C c = 0 C d u C a d t = i a − i g a C d u C b d t = i b − i g b C d u C c d t = i c − i g c (1) \left\{ \begin{matrix}{} U_a-L\frac{di_a}{dt}-i_aR-U_{Ca}=0\\ U_b-L\frac{di_b}{dt}-i_bR-U_{Cb}=0\\ U_c-L\frac{di_c}{dt}-i_cR-U_{Cc}=0\\ C\frac{du_{Ca}}{dt}=i_a-i_{ga}\\ C\frac{du_{Cb}}{dt}=i_b-i_{gb}\\ C\frac{du_{Cc}}{dt}=i_c-i_{gc}\\ \end{matrix} \right.\tag{1} UaLdtdiaiaRUCa=0UbLdtdibibRUCb=0UcLdtdicicRUCc=0CdtduCa=iaigaCdtduCb=ibigbCdtduCc=icigc(1)
  整理可得:
{ d i a d t = 1 L U a − R L i a − 1 L U C a d i b d t = 1 L U b − R L i b − 1 L U C b d i c d t = 1 L U c − R L i c − 1 L U C c d u C a d t = 1 C i a − 1 C i g a d u C b d t = 1 C i b − 1 C i g b d u C c d t = 1 C i c − 1 C i g c (2) \left\{ \begin{matrix}{} \frac{di_a}{dt}=\frac{1}{L}U_a-\frac{R}{L}i_a-\frac{1}{L}U_{Ca}\\ \frac{di_b}{dt}=\frac{1}{L}U_b-\frac{R}{L}i_b-\frac{1}{L}U_{Cb}\\ \frac{di_c}{dt}=\frac{1}{L}U_c-\frac{R}{L}i_c-\frac{1}{L}U_{Cc}\\ \frac{du_{Ca}}{dt}=\frac{1}{C}i_a-\frac{1}{C}i_{ga}\\ \frac{du_{Cb}}{dt}=\frac{1}{C}i_b-\frac{1}{C}i_{gb}\\ \frac{du_{Cc}}{dt}=\frac{1}{C}i_c-\frac{1}{C}i_{gc}\\ \end{matrix} \right.\tag{2} dtdia=L1UaLRiaL1UCadtdib=L1UbLRibL1UCbdtdic=L1UcLRicL1UCcdtduCa=C1iaC1igadtduCb=C1ibC1igbdtduCc=C1icC1igc(2)

  写成矩阵形式为:

{ [ d i a d t d i b d t d i c d t ] = 1 L [ U a U b U c ] − R L [ i a i b i c ] − 1 L [ U C a U C b U C c ] [ d U C a d t d U C b d t d U C c d t ] = 1 C [ i a i b i c ] − 1 C [ i g a i g b i g c ] (3) \left\{ \begin{matrix}{} \left[ \begin{matrix}{} \frac{di_a}{dt}\\ \frac{di_b}{dt}\\ \frac{di_c}{dt} \end{matrix} \right]= \frac{1}{L} \left[ \begin{matrix}{} U_a\\ U_b\\ U_c\\ \end{matrix} \right]- \frac{R}{L} \left[ \begin{matrix}{} i_a\\ i_b\\ i_c\\ \end{matrix} \right]- \frac{1}{L} \left[ \begin{matrix}{} U_{Ca}\\ U_{Cb}\\ U_{Cc}\\ \end{matrix} \right]\\ \left[ \begin{matrix}{} \frac{dU_{Ca}}{dt}\\ \frac{dU_{Cb}}{dt}\\ \frac{dU_{Cc}}{dt} \end{matrix} \right]= \frac{1}{C} \left[ \begin{matrix}{} i_a\\ i_b\\ i_c\\ \end{matrix} \right]- \frac{1}{C} \left[ \begin{matrix}{} i_{ga}\\ i_{gb}\\ i_{gc}\\ \end{matrix} \right] \end{matrix} \right.\tag{3} dtdiadtdibdtdic=L1UaUbUcLRiaibicL1UCaUCbUCcdtdUCadtdUCbdtdUCc=C1iaibicC1igaigbigc(3)

α β \alpha\beta αβ坐标系下逆变器方程

  又已知abc- α β \alpha\beta αβ正逆变换矩阵为:
[ U α U β U 0 ] = T a b c − α β [ U a U b U c ] = 2 3 × [ 1 − 1 2 − 1 2 0 3 2 − 3 2 1 1 1 ] [ U a U b U c ] (4) \left[ \begin {matrix}{} U_\alpha\\ U_\beta\\ U_0 \end{matrix} \right] = T_{abc-\alpha\beta} \left[ \begin {matrix} U_a\\ U_b\\ U_c \end{matrix} \right] = \frac{2}{3}\times \left[ \begin {matrix} 1 & -\frac{1}{2} & -\frac{1}{2}\\ 0 & \frac{\sqrt{3}}{2} & -\frac{\sqrt{3}}{2}\\ 1 & 1 & 1 \end{matrix} \right] \left[ \begin {matrix} U_a\\ U_b\\ U_c \end{matrix} \right]\tag{4} UαUβU0=TabcαβUaUbUc=32×1012123 12123 1UaUbUc(4)

[ U a U b U c ] = T α β − a b c [ U α U β U 0 ] = [ 1 0 1 2 − 1 2 3 2 1 2 − 1 2 − 3 2 1 2 ] [ U α U β U 0 ] (5) \left[ \begin {matrix}{} U_a\\ U_b\\ U_c \end{matrix} \right]= T_{\alpha\beta-abc} \left[ \begin {matrix} U_{\alpha}\\ U_{\beta}\\ U_0 \end{matrix} \right]= \left[ \begin {matrix} 1 & 0 & \frac{1}{2}\\ -\frac{1}{2} & \frac{\sqrt{3}}{2} & \frac{1}{2}\\ -\frac{1}{2} & -\frac{\sqrt{3}}{2} & \frac{1}{2} \end{matrix} \right] \left[ \begin {matrix} U_{\alpha}\\ U_{\beta}\\ U_0 \end{matrix} \right]\tag{5} UaUbUc=TαβabcUαUβU0=12121023 23 212121UαUβU0(5)

  这里补充了0轴是为了使变换矩阵变成方阵,利于求逆,实际上0轴不参与控制运算使用。

  对式(3)两边同时乘以 T a b c − α β T_{abc-\alpha\beta} Tabcαβ即可将逆变器方程变换到 α β \alpha\beta αβ坐标系下,可得:
T a b c − α β [ d i a d t d i b d t d i c d t ] = 1 L T a b c − α β [ U a U b U c ] − R L T a b c − α β [ i a i b i c ] − 1 L T a b c − α β [ U C a U C b U C c ] \begin{matrix}{} T_{abc-\alpha\beta} \left[ \begin{matrix}{} \frac{di_a}{dt}\\ \frac{di_b}{dt}\\ \frac{di_c}{dt} \end{matrix} \right]= \frac{1}{L} T_{abc-\alpha\beta} \left[ \begin{matrix}{} U_a\\ U_b\\ U_c\\ \end{matrix} \right]- \frac{R}{L} T_{abc-\alpha\beta} \left[ \begin{matrix}{} i_a\\ i_b\\ i_c\\ \end{matrix} \right]- \frac{1}{L} T_{abc-\alpha\beta} \left[ \begin{matrix}{} U_{Ca}\\ U_{Cb}\\ U_{Cc}\\ \end{matrix} \right]\\ \end{matrix}{} Tabcαβdtdiadtdibdtdic=L1TabcαβUaUbUcLRTabcαβiaibicL1TabcαβUCaUCbUCc

这里注意只有
[ U α U β U 0 ] = T a b c − α β [ U a U b U c ] \left[ \begin {matrix}{} U_\alpha\\ U_\beta\\ U_0 \end{matrix} \right]= T_{abc-\alpha\beta} \left[ \begin {matrix} U_a\\ U_b\\ U_c \end{matrix} \right] UαUβU0=TabcαβUaUbUc
因此 T a b c − α β [ d i a d t d i b d t d i c d t ] T_{abc-\alpha\beta} \left[ \begin{matrix}{} \frac{di_a}{dt}\\ \frac{di_b}{dt}\\ \frac{di_c}{dt} \end{matrix} \right] Tabcαβdtdiadtdibdtdic需要进行单独求取,求取过程如下:
[ i α i β i 0 ] ′ = ( T a b c − α β [ i a i b i c ] ) ′ = ( T a b c − α β ) ′ [ i a i b i c ] + ( T a b c − α β ) [ d i a d t d i b d t d i c d t ] \left[ \begin {matrix}{} i_\alpha\\ i_\beta\\ i_0 \end{matrix} \right]' = (T_{abc-\alpha\beta} \left[ \begin {matrix}{} i_a\\ i_b\\ i_c \end{matrix} \right])' = (T_{abc-\alpha\beta})' \left[ \begin {matrix}{} i_a\\ i_b\\ i_c \end{matrix} \right] + (T_{abc-\alpha\beta}) \left[ \begin{matrix}{} \frac{di_a}{dt}\\ \frac{di_b}{dt}\\ \frac{di_c}{dt} \end{matrix} \right] iαiβi0=(Tabcαβiaibic)=(Tabcαβ)iaibic+(Tabcαβ)dtdiadtdibdtdic

因此
T a b c − α β [ d i a d t d i b d t d i c d t ] = ( T a b c − α β [ i a i b i c ] ) ′ − ( T a b c − α β ) ′ [ i a i b i c ] T_{abc-\alpha\beta} \left[ \begin{matrix}{} \frac{di_a}{dt}\\ \frac{di_b}{dt}\\ \frac{di_c}{dt} \end{matrix} \right] = (T_{abc-\alpha\beta} \left[ \begin {matrix}{} i_a\\ i_b\\ i_c \end{matrix} \right])' - (T_{abc-\alpha\beta})' \left[ \begin {matrix}{} i_a\\ i_b\\ i_c \end{matrix} \right] Tabcαβdtdiadtdibdtdic=(Tabcαβiaibic)(Tabcαβ)iaibic
( T a b c − α β ) (T_{abc-\alpha\beta}) (Tabcαβ)为常数矩阵,因此
( T a b c − α β ) ′ = 0 (T_{abc-\alpha\beta})'=0 (Tabcαβ)=0

所以:
T a b c − α β [ d i a d t d i b d t d i c d t ] = [ d i α d t d i β d t d i 0 d t ] T_{abc-\alpha\beta} \left[ \begin{matrix}{} \frac{di_a}{dt}\\ \frac{di_b}{dt}\\ \frac{di_c}{dt} \end{matrix} \right] = \left[ \begin{matrix}{} \frac{di_{\alpha}}{dt}\\ \frac{di_{\beta}}{dt}\\ \frac{di_0}{dt} \end{matrix} \right] Tabcαβdtdiadtdibdtdic=dtdiαdtdiβdtdi0
同理可得:
{ [ d i α d t d i β d t d i 0 d t ] = 1 L [ U α U β U 0 ] − R L [ i α i β i 0 ] − 1 L [ U C α U C β U C 0 ] [ d U C α d t d U C β d t d U C 0 d t ] = 1 C [ i α i β i 0 ] − 1 C [ i g α i g β i g 0 ] (6) \left\{ \begin{matrix}{} \left[ \begin{matrix}{} \frac{di_{\alpha}}{dt}\\ \frac{di_{\beta}}{dt}\\ \frac{di_0}{dt} \end{matrix} \right] = \frac{1}{L} \left[ \begin{matrix}{} U_{\alpha}\\ U_{\beta}\\ U_0\\ \end{matrix} \right] - \frac{R}{L} \left[ \begin{matrix}{} i_{\alpha}\\ i_{\beta}\\ i_0\\ \end{matrix} \right] - \frac{1}{L} \left[ \begin{matrix}{} U_{C\alpha}\\ U_{C\beta}\\ U_{C0}\\ \end{matrix} \right]\\ \left[ \begin{matrix}{} \frac{dU_{C\alpha}}{dt}\\ \frac{dU_{C\beta}}{dt}\\ \frac{dU_{C0}}{dt} \end{matrix} \right] = \frac{1}{C} \left[ \begin{matrix}{} i_{\alpha}\\ i_{\beta}\\ i_0\\ \end{matrix} \right] - \frac{1}{C} \left[ \begin{matrix}{} i_{g\alpha}\\ i_{g\beta}\\ i_{g0}\\ \end{matrix} \right] \end{matrix} \right.\tag{6} dtdiαdtdiβdtdi0=L1UαUβU0LRiαiβi0L1UCαUCβUC0dtdUCαdtdUCβdtdUC0=C1iαiβi0C1igαigβig0(6)

dq坐标系下逆变器方程

  又已知 α β \alpha\beta αβ-dq正逆变换矩阵为:
[ U d U q ] = T α β − d q [ U α U β ] = [ c o s φ s i n φ − s i n φ c o s φ ] [ U α U β ] \left[ \begin {matrix}{} U_d\\ U_q\\ \end{matrix} \right] = T_{\alpha\beta-dq} \left[ \begin {matrix} U_\alpha\\ U_\beta\\ \end{matrix} \right] = \left[ \begin {matrix} cos\varphi & sin\varphi \\ -sin\varphi & cos\varphi \end{matrix} \right] \left[ \begin {matrix} U_\alpha\\ U_\beta\\ \end{matrix} \right] [UdUq]=Tαβdq[UαUβ]=[cosφsinφsinφcosφ][UαUβ]

[ U α U β ] = T d q − α β U d U q = [ c o s φ − s i n φ s i n φ c o s φ ] [ U d U q ] \left[ \begin {matrix}{} U_\alpha\\ U_\beta\\ \end{matrix} \right] = T_{dq-\alpha\beta} \begin {matrix} U_d\\ U_q\\ \end{matrix} = \left[ \begin {matrix} cos\varphi & -sin\varphi \\ sin\varphi & cos\varphi \end{matrix} \right] \left[ \begin {matrix} U_d\\ U_q\\ \end{matrix} \right] [UαUβ]=TdqαβUdUq=[cosφsinφsinφcosφ][UdUq]

  将上述 α β \alpha\beta αβ坐标下逆变器方程去掉0轴方程,并同时乘以变换矩阵 T α β − d q T_{\alpha\beta-dq} Tαβdq可得:
T α β − d q [ d i α d t d i β d t ] = 1 L T α β − d q [ U α U β ] − R L T α β − d q [ i α i β ] − 1 L T α β − d q [ U C α U C β ] T_{\alpha\beta-dq} \left[ \begin{matrix}{} \frac{di_{\alpha}}{dt}\\ \frac{di_{\beta}}{dt} \end{matrix} \right] = \frac{1}{L} T_{\alpha\beta-dq} \left[ \begin{matrix}{} U_{\alpha}\\ U_{\beta} \end{matrix} \right] - \frac{R}{L} T_{\alpha\beta-dq} \left[ \begin{matrix}{} i_{\alpha}\\ i_{\beta} \end{matrix} \right] - \frac{1}{L} T_{\alpha\beta-dq} \left[ \begin{matrix}{} U_{C\alpha}\\ U_{C\beta}\\ \end{matrix} \right]\\ Tαβdq[dtdiαdtdiβ]=L1Tαβdq[UαUβ]LRTαβdq[iαiβ]L1Tαβdq[UCαUCβ]
  同上述过程,需要求取 T α β − d q [ d i α d t d i β d t ] T_{\alpha\beta-dq} \left[ \begin{matrix}{} \frac{di_{\alpha}}{dt}\\ \frac{di_{\beta}}{dt}\end{matrix} \right] Tαβdq[dtdiαdtdiβ],此时 φ = ω t \varphi=\omega t φ=ωt , ( T α β − d q ) ′ (T_{\alpha\beta-dq})' (Tαβdq) 不再为0。
( T α β − d q ) ′ = [ − ω s i n φ ω c o s φ − ω c o s φ − ω s i n φ ] (T_{\alpha\beta-dq})' = \left[ \begin{matrix}{} -\omega sin \varphi & \omega cos \varphi\\ -\omega cos \varphi & -\omega sin \varphi \end{matrix} \right] (Tαβdq)=[ωsinφωcosφωcosφωsinφ]

T α β − d q [ d i α d t d i β d t ] = = [ d i d d t d i q d t ] − [ − ω s i n φ ω c o s φ − ω c o s φ − ω s i n φ ] [ i α i β ] = [ − ω s i n φ ω c o s φ − ω c o s φ − ω s i n φ ] ( T α β − d q ) − 1 [ i d i q ] = [ − ω s i n φ ω c o s φ − ω c o s φ − ω s i n φ ] ( T α β − d q ) − 1 [ i d i q ] = ω [ 0 1 − 1 0 ] [ i d i q ] T_{\alpha\beta-dq} \left[ \begin{matrix}{} \frac{di_{\alpha}}{dt}\\ \frac{di_{\beta}}{dt} \end{matrix} \right] == \left[ \begin{matrix}{} \frac{di_{d}}{dt}\\ \frac{di_{q}}{dt} \end{matrix} \right] - \left[ \begin{matrix}{} -\omega sin \varphi & \omega cos \varphi\\ -\omega cos \varphi & -\omega sin \varphi \end{matrix} \right] \left[ \begin{matrix}{} i_{\alpha}\\ i_{\beta} \end{matrix} \right] = \left[ \begin{matrix}{} -\omega sin \varphi & \omega cos \varphi\\ -\omega cos \varphi & -\omega sin \varphi \end{matrix} \right] (T_{\alpha\beta-dq})^{-1} \left[ \begin{matrix}{} i_{d}\\ i_{q} \end{matrix} \right]\\ = \left[ \begin{matrix}{} -\omega sin \varphi & \omega cos \varphi\\ -\omega cos \varphi & -\omega sin \varphi \end{matrix} \right] (T_{\alpha\beta-dq})^{-1} \left[ \begin{matrix}{} i_{d}\\ i_{q} \end{matrix} \right] = \omega \left[ \begin{matrix}{} 0 & 1 \\ -1 & 0 \end{matrix} \right] \left[ \begin{matrix}{} i_{d}\\ i_{q} \end{matrix} \right] Tαβdq[dtdiαdtdiβ]==[dtdiddtdiq][ωsinφωcosφωcosφωsinφ][iαiβ]=[ωsinφωcosφωcosφωsinφ](Tαβdq)1[idiq]=[ωsinφωcosφωcosφωsinφ](Tαβdq)1[idiq]=ω[0110][idiq]

   代入系统方程可得dq坐标系下的逆变器方程为:
{ [ d i d d t d i q d t ] = 1 L [ U d U q ] − R L [ i d i q ] − 1 L [ U C d U C q ] + ω [ i q − i d ] [ d U C d d t d U C q d t ] = 1 C [ i d i q ] − 1 C [ i g d i g q ] + ω [ U C q − U C d ] (7) \left \{ \begin{matrix}{} \left[ \begin{matrix}{} \frac{di_{d}}{dt}\\ \frac{di_{q}}{dt}\\ \end{matrix} \right] = \frac{1}{L} \left[ \begin{matrix}{} U_{d}\\ U_{q}\\ \end{matrix} \right] - \frac{R}{L} \left[ \begin{matrix}{} i_{d}\\ i_{q}\\ \end{matrix} \right] - \frac{1}{L} \left[ \begin{matrix}{} U_{Cd}\\ U_{Cq}\\ \end{matrix} \right] + \omega \left[ \begin{matrix}{} i_{q}\\ -i_{d}\\ \end{matrix} \right] \\ \left[ \begin{matrix}{} \frac{dU_{Cd}}{dt}\\ \frac{dU_{Cq}}{dt}\\ \end{matrix} \right] = \frac{1}{C} \left[ \begin{matrix}{} i_{d}\\ i_{q}\\ \end{matrix} \right] - \frac{1}{C} \left[ \begin{matrix}{} i_{gd}\\ i_{gq}\\ \end{matrix} \right] +\omega \left[ \begin{matrix}{} U_{Cq}\\ -U_{Cd}\\ \end{matrix} \right] \\ \end{matrix} \right.\tag{7} [dtdiddtdiq]=L1[UdUq]LR[idiq]L1[UCdUCq]+ω[iqid][dtdUCddtdUCq]=C1[idiq]C1[igdigq]+ω[UCqUCd](7)
  此时可以发现系统d轴方程存在与q轴耦合的现象,因此需要对系统进行精确控制需要进行dq轴解耦

对式(7)进行拉普拉斯变换可得:
{ i d = i g d + s C U C d − ω C U C q i q = i g q + s C U C q + ω C U C d U d = ( s L + R ) i d + U C d − ω L i q U q = ( s L + R ) i q + U C q + ω L i d (8) \left\{ \begin{matrix}{} i_d = i_{gd}+sCU_{Cd}-\omega CU_{Cq}\\ i_q = i_{gq}+sCU_{Cq}+\omega CU_{Cd}\\ U_d = (sL+R)i_{d}+U_{Cd}-\omega Li_{q}\\ U_q = (sL+R)i_{q}+U_{Cq}+\omega Li_{d}\\ \end{matrix} \right.\tag{8} id=igd+sCUCdωCUCqiq=igq+sCUCq+ωCUCdUd=(sL+R)id+UCdωLiqUq=(sL+R)iq+UCq+ωLid(8)

用式(8)可以绘制如下框图。

在这里插入图片描述

  根据逆变器本体模型可以设置双PI控制原理图,因为通过解耦后结合PI控制器即可实现精准控制。

在这里插入图片描述

并网逆变器PI控制器定值跟踪

对于PI控制器
G ( s ) = K P ( 1 + K i s ) = K P s + K P K i s G ( j ω ) = K P j ω + K P K i j ω G_{(s)}=K_P(1+\frac{K_i}{s})=\frac{K_Ps+K_PK_i}{s}\\ G(j\omega) = \frac{K_Pj\omega+K_PK_i}{j\omega} \\ G(s)=KP(1+sKi)=sKPs+KPKiG(jω)=jωKPjω+KPKi
因此:
G ( j 0 ) = K P j 0 + K P K i j 0 = ∞ G(j0) = \frac{K_Pj0+K_PK_i}{j0} = \infty \\ G(j0)=j0KPj0+KPKi=
此时闭环传函为:
A = G ( j 0 ) 1 + G ( j 0 ) = 1 A=\frac{G_{(j0)} }{1+G_{(j0)}} = 1 A=1+G(j0)G(j0)=1
所以 PI控制器对频率为0的信号(直流信号)可以实现无静差跟踪!因此在以上过程中需要将逆变器控制模型变换到dq轴,因为dq变换是以PLL输出电压角度进行变换,所以三相电流在dq坐标系下(d轴分量为电流幅值,q轴分量为零)。解耦是为了消除其他轴对PI控制的影响。

仿真结果

SPWM调制信号:
采样信号
输出线电压(未滤波器前):
在这里插入图片描述
负载侧相电压(0.1s并网,0.8s给定功率阶跃):
在这里插入图片描述
输出功率:
在这里插入图片描述
仿真模型:模型链接

  • 8
    点赞
  • 107
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 1
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Quikk

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值