基于PI双闭环解耦控制的三相SVPWM电压型逆变器(2)--控制器设计

文章介绍了三相电压型逆变器的控制器设计,重点在于PI双闭环解耦控制策略。在ABC、αβ和dq坐标系下对比了数学模型,最终选择dq坐标系进行控制器设计。通过拉普拉斯变换处理方程,实现电流和电压环的解耦,并详细阐述了PI控制器如何引入到系统中,以达到控制目标。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

在上一篇文章中,我们得到了三相逆变器的数学模型,接下来就是进行控制器的设计。其实对数学模型的设计目的就是研究控制器,控制器才是决定我们逆变结果的直接决定因素。

同时这一篇文章虽然是控制器的设计,但是对数学模型的要求也比较高,所以如果对数学模型的理解不太深入的话,可以参考上一篇文章。

基于PI双闭环解耦控制的三相SVPWM电压型逆变器(1)--数学模型

浅述各个坐标系的特点

有人可能会有疑问,在上一篇文章中,我们得到了许多坐标系下的数学模型,对于控制器的设计,到底用哪一种呢?实际上不同坐标系下的数学模型都是用来描述逆变器,可能有的数学模型可能有一些抽象,不利于我们理解,这些坐标系下的数学模型都有各自的特点。

在abc坐标系下,可以看出,他对数学模型的描述比较充分,足足有6个方程,三个KVL,三个KCL,这些方程是直接通过KVL,KCL定律推出来的,所以说比较容易理解,对逆变器的描述也比较直观。

在αβ坐标系下,最大的优点就是减少了方程的数量,将6个方程简化为4个方程,对于控制系统的简化,是一个比较好的转换。

在dq坐标系下,方程的数量虽然没有减少,但是因为坐标系是旋转的,所以把交流量转换成了直流量,有利于PI控制。从某个角度上来讲,因为使用的是PI控制,所以要进行Park变换。

拉普拉斯变换

这三种坐标系层层递进,最后dq坐标系是我们进行控制器设计的直接依据。下面是dq坐标系下的数学模型。

如果要对控制器设计,离不开的就是拉氏变换,我们首先要对上式进行拉氏变换。得到以下4个公式。

得到上面的传递函数之后,可以画出系统框图

这个图和控制系统框图实际上是反过来的,因为我们是通过输出电压去调整输入电压。

从上面的结构图也可以看出来一个比较重要的问题,就是耦合。d和q轴是耦合在一起的,这时候就需要解耦控制,也比较简单。

引入PI控制器

这时候我们需要把PI控制引入到这个系统当中。对于电压外环,令

可能很多人看到这里会有些糊涂,为什么等式左边会等于等式右边。在等式左边对电压的微分实际上表示的是电流,等式右边的PI环节,对输出电压目标值与实际值之间做差然后经过PI运算得到的也是电流,所以可以相等。对PI的参数进行调节,可以达到微分的效果。(这里解释的比较模糊我感觉,我对这个地方的理解也比较有限)

将这种等效关系与之前得到的时域下的数学方程相结合,可以得到下面的式子

这里的Id,Iq实际上就是电流内环的目标值,既Id*,Iq*

对电流内环,经过同样的过程,就可以的类似的方程,如下所示

通过以上这四个方程,我们就得到了需要控制器,对应的流程图如下

值得一体的是,通常电压外环的输出不去加负载电流,而是直接作为电流内环的目标值,也可以达到控制效果。

这时候我们只是得到了控制器,并没有计算出PI相关参数,可以利用自控的相关知识进行相关计算,简化调参,也可以直接调参。

### 三相逆变器双闭环SVPWM仿真方法 #### 使用MATLAB Simulink实现三相逆变器双闭环SVPWM仿真的具体过程如下: 在构建三相逆变器的Simulink模时,需先定义基本参数并设置输入信号。对于采用空间矢量脉宽调制(SVPWM)策略的逆变器而言,在控制系统的设计上通常会引入内环电流控制和外环速度或电压控制来提高动态响应性能以及稳态精度。 为了达到良好的调节效果,内外两个反馈回路均采用了比例积分控制器(PI Controller),即形成所谓的“双闭环”。在外环部分主要负责设定期望值与实际测量之间的偏差处理;而内环则专注于快速调整各相电流使之尽可能贴近理想波形[^2]。 ```matlab % 初始化 PI 控制器参数 Kp_v = 0.5; Ki_v = 10; Kp_i = 2; Ki_i = 5; % 创建 PI 控制器对象 piControllerVoltage = pid(Kp_v, Ki_v); piControllerCurrent = pid(Kp_i, Ki_i); % 设置采样时间 (假设为固定步长) Ts = 0.0001; ``` 接着就是关于如何利用MATLAB/Simulink工具箱中的函数库组件完成整个电路拓扑图绘制工作。这里涉及到几个重要环节:首先是直流侧电源供给单元,其次是开关器件的选择及其驱动逻辑编写,最后便是负载特性建模——这些都直接影响到最终输出特性的优劣程度[^3]。 针对SVPWM算法本身来说,则是在传统SPWM基础上发展起来的一种更高效的PWM方式。它能够有效减少谐波分量的同时提升直流利用率。因此,在Simulink环境中可以通过自定义模块或者直接调用内置的功能块来进行此操作[^1]。 当所有准备工作完成后,便可通过运行模拟实验观察各项指标是否符合预期,并据此不断优化设计方案直至满意为止。值得注意的是,由于电力电子设备往往存在非线性和强耦合等特点,所以在调试过程中可能需要反复尝试不同的配置组合以找到最佳解决方案。
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

苦瓜人生

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值