第二章 确定信号


看到功率:一个周期,取极限

一、确定信号的类型

信号在数学上可以用一个时间函数表示 s ( t ) s(t) s(t)

周期信号: s ( t ) = s ( t + T ) s(t)=s(t+T) s(t)=s(t+T)
非周期信号:按照周期无穷处理 lim ⁡ T → + ∞ \lim\limits_{T\to+\infty} T+lim

信号的功率:电流在单位电阻上消耗的功率
P = V 2 R = I 2 R = V 2 = I 2 P=\frac{V^2}{R}=I^2R=V^2=I^2 P=RV2=I2R=V2=I2
若果信号 s ( t ) s(t) s(t)表示电压 V V V或者电流 I I I随时间的波动,则 s ( t ) s(t) s(t)也可理解为瞬时功率:
E = ∫ − ∞ + ∞ s 2 ( t ) d t P = lim ⁡ T → + ∞ 1 T ∫ − T / 2 T / 2 s 2 ( t ) d t E=\int_{-\infty}^{+\infty}s^2(t)dt\\ P=\lim\limits_{T\to+\infty}\frac{1}{T}\int_{-T/2}^{T/2}s^2(t)dt E=+s2(t)dtP=T+limT1T/2T/2s2(t)dt
E表示能量,P表示平均功率,任意一个周期内的能量除以周期,取极限是为了统一表示非周期信号和周期信号。

能量信号: 0 < E < ∞ , P = 0 0< E<\infty,P=0 0<E<,P=0
功率信号: E = ∞ , 0 < P < ∞ E=\infty,0< P<\infty E=,0<P<

二、频域性质

频谱:傅里叶级数系数
频谱密度:傅里叶变换
能量谱密度:对 f f f积分为能量
功率谱密度:对 f f f积分为功率

1. 功率信号的频谱

频谱:信号 s ( t ) s(t) s(t)的傅里叶级数的系数 C n C_n Cn为频谱
C n = C ( n f ) = 1 T ∫ − T / 2 T / 2 s ( t ) e − j 2 π n f 0 t d t s ( t ) = ∑ n = − ∞ n = + ∞ C n e j 2 π n t / T 0 C_n=C(nf)=\frac{1}{T}\int_{-T/2}^{T/2}s(t)e^{-j2\pi nf_0t}dt\\ s(t)=\sum_{n=-\infty}^{n=+\infty}C_ne^{j2\pi nt/T_0} Cn=C(nf)=T1T/2T/2s(t)ej2πnf0tdts(t)=n=n=+Cnej2πnt/T0
由上关系式得 C − n = C n ∗ C_{-n}=C_n^* Cn=Cn(互为共轭),将正部和负部分开写得
s ( t ) = C 0 + ∑ n = − ∞ n = − 1 C n e j 2 π n t / T 0 + ∑ n = 1 + ∞ C n e j 2 π n t / T 0 = C 0 + ∑ n = 1 + ∞ C − n e − j 2 π n t / T 0 + ∑ n = 1 + ∞ C n e j 2 π n t / T 0 = C 0 + ∑ n = 1 + ∞ C n ∗ e − j 2 π n t / T 0 + ∑ n = 1 + ∞ C n e j 2 π n t / T 0 = C 0 + ∑ n = 1 + ∞ [ ( C n + C n ∗ ) c o s ( 2 π n t / T 0 ) + j ( C n − C n ∗ ) s i n ( 2 π n t / T 0 ) ] = C 0 + ∑ n = 1 + ∞ [ a n c o s ( 2 π n t / T 0 ) + b n s i n ( 2 π n t / T 0 ) ] = C 0 + ∑ n = 1 + ∞ [ a n 2 + b n 2 c o s ( 2 π n t / T 0 + θ n ) ] s(t)=C_0+\sum_{n=-\infty}^{n=-1}C_ne^{j2\pi nt/T_0}+\sum_{n=1}^{+\infty}C_ne^{j2\pi nt/T_0}\\ =C_0+\sum_{n=1}^{+\infty}C_{-n}e^{-j2\pi nt/T_0}+\sum_{n=1}^{+\infty}C_ne^{j2\pi nt/T_0}\\ =C_0+\sum_{n=1}^{+\infty}C_{n^*}e^{-j2\pi nt/T_0}+\sum_{n=1}^{+\infty}C_ne^{j2\pi nt/T_0}\\ =C_0+\sum_{n=1}^{+\infty}[(C_n+C_n^*)cos(2\pi nt/T_0)+j(C_n-C_n^*)sin(2\pi nt/T_0)]\\ =C_0+\sum_{n=1}^{+\infty}[a_ncos(2\pi nt/T_0)+b_nsin(2\pi nt/T_0)]\\ =C_0+\sum_{n=1}^{+\infty}[\sqrt{a_n^2+b_n^2}cos(2\pi nt/T_0+\theta_n)] s(t)=C0+n=n=1Cnej2πnt/T0+n=1+Cnej2πnt/T0=C0+n=1+Cnej2πnt/T0+n=1+Cnej2πnt/T0=C0+n=1+Cnej2πnt/T0+n=1+Cnej2πnt/T0=C0+n=1+[(Cn+Cn)cos(2πnt/T0)+j(CnCn)sin(2πnt/T0)]=C0+n=1+[ancos(2πnt/T0)+bnsin(2πnt/T0)]=C0+n=1+[an2+bn2 cos(2πnt/T0+θn)]
θ n = − a r c t a n ( b n / a n ) \theta_n=-arctan(b_n/a_n) θn=arctan(bn/an)
此过程实际推到过程中其实相反,根据傅里叶级数定义求出 a n , b n a_n,b_n an,bn,进行同频合并简化,用欧拉公式。

2.能量信号的频谱密度

注意:频谱密度和频谱不是一个东西。能量信号 s ( t ) s(t) s(t)的频谱密度为它的傅里叶变换 S ( f ) S(f) S(f)
S ( f ) = ∫ − ∞ + ∞ s ( t ) e − j 2 π f t d t s ( t ) = ∫ − ∞ + ∞ S ( f ) e j 2 π f t d f S(f)=\int_{-\infty}^{+\infty}s(t)e^{-j2\pi ft}dt\\ s(t)=\int_{-\infty}^{+\infty}S(f)e^{j2\pi ft}df S(f)=+s(t)ej2πftdts(t)=+S(f)ej2πftdf
正变换指数函数为负,逆变换指数函数为正。

3.能量信号的能量谱密度

能量谱密度:能量信号 s ( t ) s(t) s(t)的傅里叶变换 S ( f ) S(f) S(f)的模的平方 ∣ S ( f ) ∣ 2 |S(f)|^2 S(f)2为能量谱密度
巴塞伐尔定理:
E = ∫ − ∞ + ∞ s 2 ( t ) d t = ∫ − ∞ + ∞ ∣ S ( f ) ∣ 2 d f E=\int_{-\infty}^{+\infty}s^2(t)dt=\int_{-\infty}^{+\infty}|S(f)|^2df E=+s2(t)dt=+S(f)2df
谱:频率 f f f为自变量
密度:积分为原值
能量谱密度:对 f f f积分为能量 ∣ S ( f ) ∣ 2 |S(f)|^2 S(f)2

4.功率信号的功率谱密度

开始吟唱
谱:频率 f f f为自变量
密度:积分得到原值
功率:一个周期内的能量除以 T T T
功率谱密度:对 f f f积分为功率
根据巴塞伐尔定理,取 s ( t ) s(t) s(t)一个周期内截断信号 s T ( t ) s_T(t) sT(t),一个周期内的能量为
E T = ∫ − T / 2 + T / 2 s T 2 ( t ) d t = ∫ − ∞ + ∞ ∣ S T ( f ) ∣ 2 d f E_T=\int_{-T/2}^{+T/2}s_T^2(t)dt=\int_{-\infty}^{+\infty}|S_T(f)|^2df ET=T/2+T/2sT2(t)dt=+ST(f)2df
P = lim ⁡ T → + ∞ E T T = lim ⁡ T → + ∞ ∫ − ∞ + ∞ ∣ S T ( f ) ∣ 2 d f T = ∫ − ∞ + ∞ lim ⁡ T → + ∞ ∣ S T ( f ) ∣ 2 T d f P=\lim\limits_{T\to+\infty}\frac{E_T}{T}=\lim\limits_{T\to+\infty}\frac{\int_{-\infty}^{+\infty}|S_T(f)|^2df}{T}=\int_{-\infty}^{+\infty} \lim\limits_{T\to+\infty}\frac{|S_T(f)|^2}{T}df P=T+limTET=T+limT+ST(f)2df=+T+limTST(f)2df
功率谱密度: lim ⁡ T → + ∞ ∣ S T ( f ) ∣ 2 T \lim\limits_{T\to+\infty}\frac{|S_T(f)|^2}{T} T+limTST(f)2
去极限是为了统一周期信号和非周期信号,周期信号不取极限 直接带入周期即可

思考:为什么能量信号只分析能量谱密度,功率信号只分析功率谱密度,看定义,因为能量信号的功率为0,功率谱密度无意义。

三、时域性质

分析自相关性与互相关性

1.能量信号的自相关函数

R ( τ ) = ∫ − ∞ + ∞ s ( t ) s ( t + τ ) d t R(\tau)=\int_{-\infty}^{+\infty}s(t)s(t+\tau)dt R(τ)=+s(t)s(t+τ)dt
性质1: R ( 0 ) = ∫ − ∞ + ∞ s ( t ) s ( t ) d t = E R(0)=\int_{-\infty}^{+\infty}s(t)s(t)dt=E R(0)=+s(t)s(t)dt=E
性质2: R ( τ ) = ∫ − ∞ + ∞ S ( f ) 2 e 2 π f t d f R(\tau)=\int_{-\infty}^{+\infty}S(f)^2e^{2\pi ft}df R(τ)=+S(f)2e2πftdf
R ( τ ) 与 R(\tau)与 R(τ) S ( f ) 2 S(f)^2 S(f)2构成傅里叶变换对

2.功率信号的自相关函数

R ( τ ) = lim ⁡ T → + ∞ ∫ − T / 2 + T / 2 s ( t ) s ( t + τ ) d t R(\tau)=\lim\limits_{T\to+\infty}\int_{-T/2}^{+T/2}s(t)s(t+\tau)dt R(τ)=T+limT/2+T/2s(t)s(t+τ)dt
性质1: R ( 0 ) = P R(0)=P R(0)=P
性质2: R ( τ ) = ∫ − ∞ + ∞ P ( f ) e 2 π f t d f R(\tau)=\int_{-\infty}^{+\infty}P(f)e^{2\pi ft}df R(τ)=+P(f)e2πftdf
R ( τ ) 与 R(\tau)与 R(τ) P ( f ) P(f) P(f)功率谱密度构成傅里叶变换对

3.能量信号的互相关函数

R 12 ( τ ) = ∫ − ∞ + ∞ s 1 ( t ) s 2 ( t + τ ) d t R_{12}(\tau)=\int_{-\infty}^{+\infty}s_1(t)s_2(t+\tau)dt R12(τ)=+s1(t)s2(t+τ)dt
性质1: R 12 ( τ ) = R 21 ( − τ ) R_{12}(\tau)=R_{21}(-\tau) R12(τ)=R21(τ)
性质2: S 12 ( f ) = S 1 ∗ ( f ) S 2 ( f ) S_{12}(f)=S_1^*(f)S_2(f) S12(f)=S1(f)S2(f)(互能量谱密度)
互相关函数与互能量谱密度为傅里叶变换对

4.功率信号的互相关函数

R 12 ( τ ) = lim ⁡ T → + ∞ ∫ − T / 2 + T / 2 s 1 ( t ) s 2 ( t + τ ) d t R_{12}(\tau)=\lim\limits_{T\to+\infty}\int_{-T/2}^{+T/2}s_1(t)s_2(t+\tau)dt R12(τ)=T+limT/2+T/2s1(t)s2(t+τ)dt
性质1: R 12 ( τ ) = R 21 ( − τ ) R_{12}(\tau)=R_{21}(-\tau) R12(τ)=R21(τ)
性质2: C 12 = ( C n ) 1 ∗ ( C n ) 2 C_{12}=(C_n)_1^*(C_n)_2 C12=(Cn)1(Cn)2
互相关函数与互功率谱(而非密度)为傅里叶变换对

参考书《通信原理》第七版 樊昌信 曹丽娜

评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值