文章目录
看到功率:一个周期,取极限
一、确定信号的类型
信号在数学上可以用一个时间函数表示 s ( t ) s(t) s(t)
周期信号:
s
(
t
)
=
s
(
t
+
T
)
s(t)=s(t+T)
s(t)=s(t+T)
非周期信号:按照周期无穷处理
lim
T
→
+
∞
\lim\limits_{T\to+\infty}
T→+∞lim
信号的功率:电流在单位电阻上消耗的功率
P
=
V
2
R
=
I
2
R
=
V
2
=
I
2
P=\frac{V^2}{R}=I^2R=V^2=I^2
P=RV2=I2R=V2=I2
若果信号
s
(
t
)
s(t)
s(t)表示电压
V
V
V或者电流
I
I
I随时间的波动,则
s
(
t
)
s(t)
s(t)也可理解为瞬时功率:
E
=
∫
−
∞
+
∞
s
2
(
t
)
d
t
P
=
lim
T
→
+
∞
1
T
∫
−
T
/
2
T
/
2
s
2
(
t
)
d
t
E=\int_{-\infty}^{+\infty}s^2(t)dt\\ P=\lim\limits_{T\to+\infty}\frac{1}{T}\int_{-T/2}^{T/2}s^2(t)dt
E=∫−∞+∞s2(t)dtP=T→+∞limT1∫−T/2T/2s2(t)dt
E表示能量,P表示平均功率,任意一个周期内的能量除以周期,取极限是为了统一表示非周期信号和周期信号。
能量信号:
0
<
E
<
∞
,
P
=
0
0< E<\infty,P=0
0<E<∞,P=0
功率信号:
E
=
∞
,
0
<
P
<
∞
E=\infty,0< P<\infty
E=∞,0<P<∞
二、频域性质
频谱:傅里叶级数系数
频谱密度:傅里叶变换
能量谱密度:对
f
f
f积分为能量
功率谱密度:对
f
f
f积分为功率
1. 功率信号的频谱
频谱:信号
s
(
t
)
s(t)
s(t)的傅里叶级数的系数
C
n
C_n
Cn为频谱
C
n
=
C
(
n
f
)
=
1
T
∫
−
T
/
2
T
/
2
s
(
t
)
e
−
j
2
π
n
f
0
t
d
t
s
(
t
)
=
∑
n
=
−
∞
n
=
+
∞
C
n
e
j
2
π
n
t
/
T
0
C_n=C(nf)=\frac{1}{T}\int_{-T/2}^{T/2}s(t)e^{-j2\pi nf_0t}dt\\ s(t)=\sum_{n=-\infty}^{n=+\infty}C_ne^{j2\pi nt/T_0}
Cn=C(nf)=T1∫−T/2T/2s(t)e−j2πnf0tdts(t)=n=−∞∑n=+∞Cnej2πnt/T0
由上关系式得
C
−
n
=
C
n
∗
C_{-n}=C_n^*
C−n=Cn∗(互为共轭),将正部和负部分开写得
s
(
t
)
=
C
0
+
∑
n
=
−
∞
n
=
−
1
C
n
e
j
2
π
n
t
/
T
0
+
∑
n
=
1
+
∞
C
n
e
j
2
π
n
t
/
T
0
=
C
0
+
∑
n
=
1
+
∞
C
−
n
e
−
j
2
π
n
t
/
T
0
+
∑
n
=
1
+
∞
C
n
e
j
2
π
n
t
/
T
0
=
C
0
+
∑
n
=
1
+
∞
C
n
∗
e
−
j
2
π
n
t
/
T
0
+
∑
n
=
1
+
∞
C
n
e
j
2
π
n
t
/
T
0
=
C
0
+
∑
n
=
1
+
∞
[
(
C
n
+
C
n
∗
)
c
o
s
(
2
π
n
t
/
T
0
)
+
j
(
C
n
−
C
n
∗
)
s
i
n
(
2
π
n
t
/
T
0
)
]
=
C
0
+
∑
n
=
1
+
∞
[
a
n
c
o
s
(
2
π
n
t
/
T
0
)
+
b
n
s
i
n
(
2
π
n
t
/
T
0
)
]
=
C
0
+
∑
n
=
1
+
∞
[
a
n
2
+
b
n
2
c
o
s
(
2
π
n
t
/
T
0
+
θ
n
)
]
s(t)=C_0+\sum_{n=-\infty}^{n=-1}C_ne^{j2\pi nt/T_0}+\sum_{n=1}^{+\infty}C_ne^{j2\pi nt/T_0}\\ =C_0+\sum_{n=1}^{+\infty}C_{-n}e^{-j2\pi nt/T_0}+\sum_{n=1}^{+\infty}C_ne^{j2\pi nt/T_0}\\ =C_0+\sum_{n=1}^{+\infty}C_{n^*}e^{-j2\pi nt/T_0}+\sum_{n=1}^{+\infty}C_ne^{j2\pi nt/T_0}\\ =C_0+\sum_{n=1}^{+\infty}[(C_n+C_n^*)cos(2\pi nt/T_0)+j(C_n-C_n^*)sin(2\pi nt/T_0)]\\ =C_0+\sum_{n=1}^{+\infty}[a_ncos(2\pi nt/T_0)+b_nsin(2\pi nt/T_0)]\\ =C_0+\sum_{n=1}^{+\infty}[\sqrt{a_n^2+b_n^2}cos(2\pi nt/T_0+\theta_n)]
s(t)=C0+n=−∞∑n=−1Cnej2πnt/T0+n=1∑+∞Cnej2πnt/T0=C0+n=1∑+∞C−ne−j2πnt/T0+n=1∑+∞Cnej2πnt/T0=C0+n=1∑+∞Cn∗e−j2πnt/T0+n=1∑+∞Cnej2πnt/T0=C0+n=1∑+∞[(Cn+Cn∗)cos(2πnt/T0)+j(Cn−Cn∗)sin(2πnt/T0)]=C0+n=1∑+∞[ancos(2πnt/T0)+bnsin(2πnt/T0)]=C0+n=1∑+∞[an2+bn2cos(2πnt/T0+θn)]
θ
n
=
−
a
r
c
t
a
n
(
b
n
/
a
n
)
\theta_n=-arctan(b_n/a_n)
θn=−arctan(bn/an)
此过程实际推到过程中其实相反,根据傅里叶级数定义求出
a
n
,
b
n
a_n,b_n
an,bn,进行同频合并简化,用欧拉公式。
2.能量信号的频谱密度
注意:频谱密度和频谱不是一个东西。能量信号
s
(
t
)
s(t)
s(t)的频谱密度为它的傅里叶变换
S
(
f
)
S(f)
S(f)
S
(
f
)
=
∫
−
∞
+
∞
s
(
t
)
e
−
j
2
π
f
t
d
t
s
(
t
)
=
∫
−
∞
+
∞
S
(
f
)
e
j
2
π
f
t
d
f
S(f)=\int_{-\infty}^{+\infty}s(t)e^{-j2\pi ft}dt\\ s(t)=\int_{-\infty}^{+\infty}S(f)e^{j2\pi ft}df
S(f)=∫−∞+∞s(t)e−j2πftdts(t)=∫−∞+∞S(f)ej2πftdf
正变换指数函数为负,逆变换指数函数为正。
3.能量信号的能量谱密度
能量谱密度:能量信号
s
(
t
)
s(t)
s(t)的傅里叶变换
S
(
f
)
S(f)
S(f)的模的平方
∣
S
(
f
)
∣
2
|S(f)|^2
∣S(f)∣2为能量谱密度
巴塞伐尔定理:
E
=
∫
−
∞
+
∞
s
2
(
t
)
d
t
=
∫
−
∞
+
∞
∣
S
(
f
)
∣
2
d
f
E=\int_{-\infty}^{+\infty}s^2(t)dt=\int_{-\infty}^{+\infty}|S(f)|^2df
E=∫−∞+∞s2(t)dt=∫−∞+∞∣S(f)∣2df
谱:频率
f
f
f为自变量
密度:积分为原值
能量谱密度:对
f
f
f积分为能量
∣
S
(
f
)
∣
2
|S(f)|^2
∣S(f)∣2
4.功率信号的功率谱密度
开始吟唱
谱:频率
f
f
f为自变量
密度:积分得到原值
功率:一个周期内的能量除以
T
T
T
功率谱密度:对
f
f
f积分为功率
根据巴塞伐尔定理,取
s
(
t
)
s(t)
s(t)一个周期内截断信号
s
T
(
t
)
s_T(t)
sT(t),一个周期内的能量为
E
T
=
∫
−
T
/
2
+
T
/
2
s
T
2
(
t
)
d
t
=
∫
−
∞
+
∞
∣
S
T
(
f
)
∣
2
d
f
E_T=\int_{-T/2}^{+T/2}s_T^2(t)dt=\int_{-\infty}^{+\infty}|S_T(f)|^2df
ET=∫−T/2+T/2sT2(t)dt=∫−∞+∞∣ST(f)∣2df
P
=
lim
T
→
+
∞
E
T
T
=
lim
T
→
+
∞
∫
−
∞
+
∞
∣
S
T
(
f
)
∣
2
d
f
T
=
∫
−
∞
+
∞
lim
T
→
+
∞
∣
S
T
(
f
)
∣
2
T
d
f
P=\lim\limits_{T\to+\infty}\frac{E_T}{T}=\lim\limits_{T\to+\infty}\frac{\int_{-\infty}^{+\infty}|S_T(f)|^2df}{T}=\int_{-\infty}^{+\infty} \lim\limits_{T\to+\infty}\frac{|S_T(f)|^2}{T}df
P=T→+∞limTET=T→+∞limT∫−∞+∞∣ST(f)∣2df=∫−∞+∞T→+∞limT∣ST(f)∣2df
功率谱密度:
lim
T
→
+
∞
∣
S
T
(
f
)
∣
2
T
\lim\limits_{T\to+\infty}\frac{|S_T(f)|^2}{T}
T→+∞limT∣ST(f)∣2
去极限是为了统一周期信号和非周期信号,周期信号不取极限 直接带入周期即可
思考:为什么能量信号只分析能量谱密度,功率信号只分析功率谱密度,看定义,因为能量信号的功率为0,功率谱密度无意义。
三、时域性质
分析自相关性与互相关性
1.能量信号的自相关函数
R
(
τ
)
=
∫
−
∞
+
∞
s
(
t
)
s
(
t
+
τ
)
d
t
R(\tau)=\int_{-\infty}^{+\infty}s(t)s(t+\tau)dt
R(τ)=∫−∞+∞s(t)s(t+τ)dt
性质1:
R
(
0
)
=
∫
−
∞
+
∞
s
(
t
)
s
(
t
)
d
t
=
E
R(0)=\int_{-\infty}^{+\infty}s(t)s(t)dt=E
R(0)=∫−∞+∞s(t)s(t)dt=E
性质2:
R
(
τ
)
=
∫
−
∞
+
∞
S
(
f
)
2
e
2
π
f
t
d
f
R(\tau)=\int_{-\infty}^{+\infty}S(f)^2e^{2\pi ft}df
R(τ)=∫−∞+∞S(f)2e2πftdf
R
(
τ
)
与
R(\tau)与
R(τ)与
S
(
f
)
2
S(f)^2
S(f)2构成傅里叶变换对
2.功率信号的自相关函数
R
(
τ
)
=
lim
T
→
+
∞
∫
−
T
/
2
+
T
/
2
s
(
t
)
s
(
t
+
τ
)
d
t
R(\tau)=\lim\limits_{T\to+\infty}\int_{-T/2}^{+T/2}s(t)s(t+\tau)dt
R(τ)=T→+∞lim∫−T/2+T/2s(t)s(t+τ)dt
性质1:
R
(
0
)
=
P
R(0)=P
R(0)=P
性质2:
R
(
τ
)
=
∫
−
∞
+
∞
P
(
f
)
e
2
π
f
t
d
f
R(\tau)=\int_{-\infty}^{+\infty}P(f)e^{2\pi ft}df
R(τ)=∫−∞+∞P(f)e2πftdf
R
(
τ
)
与
R(\tau)与
R(τ)与
P
(
f
)
P(f)
P(f)功率谱密度构成傅里叶变换对
3.能量信号的互相关函数
R
12
(
τ
)
=
∫
−
∞
+
∞
s
1
(
t
)
s
2
(
t
+
τ
)
d
t
R_{12}(\tau)=\int_{-\infty}^{+\infty}s_1(t)s_2(t+\tau)dt
R12(τ)=∫−∞+∞s1(t)s2(t+τ)dt
性质1:
R
12
(
τ
)
=
R
21
(
−
τ
)
R_{12}(\tau)=R_{21}(-\tau)
R12(τ)=R21(−τ)
性质2:
S
12
(
f
)
=
S
1
∗
(
f
)
S
2
(
f
)
S_{12}(f)=S_1^*(f)S_2(f)
S12(f)=S1∗(f)S2(f)(互能量谱密度)
互相关函数与互能量谱密度为傅里叶变换对
4.功率信号的互相关函数
R
12
(
τ
)
=
lim
T
→
+
∞
∫
−
T
/
2
+
T
/
2
s
1
(
t
)
s
2
(
t
+
τ
)
d
t
R_{12}(\tau)=\lim\limits_{T\to+\infty}\int_{-T/2}^{+T/2}s_1(t)s_2(t+\tau)dt
R12(τ)=T→+∞lim∫−T/2+T/2s1(t)s2(t+τ)dt
性质1:
R
12
(
τ
)
=
R
21
(
−
τ
)
R_{12}(\tau)=R_{21}(-\tau)
R12(τ)=R21(−τ)
性质2:
C
12
=
(
C
n
)
1
∗
(
C
n
)
2
C_{12}=(C_n)_1^*(C_n)_2
C12=(Cn)1∗(Cn)2
互相关函数与互功率谱(而非密度)为傅里叶变换对
参考书《通信原理》第七版 樊昌信 曹丽娜