Matrix Analysis
文章平均质量分 71
deeeeeeplearning
研究方向:优化 机器学习 深度学习
展开
-
线代基本定理4
线代基本定理3前言定理总结前言线代基本定理3与4讲的都是一个东西 奇异值分解。定理设AAA为m*n的实矩阵,r=rank(AAA).设ATAA^TAATA的特征值{σ1,...,σn\sigma_1,...,\sigma_nσ1,...,σn},特征向量{v1,...vnv_1,...v_nv1,...vn} n∗1n*1n∗1ATAvi=σi2viA^TAv_i=\sigma_i^2v_iATAvi=σi2vi设AATAA^TAAT的特征值{σ1,...,σn\sigm原创 2021-03-28 12:38:13 · 1045 阅读 · 1 评论 -
线代基本定理3
线代基本定理3前言前言线代基本定理1说明了矩阵四个基本空间的维数关系,基本定理2说明了四个基本空间的正交余补性质。依据矩阵乘法方式以及简约行阶梯型。我们希望知道这四个基本空间基底的关系。...原创 2021-03-28 12:12:52 · 370 阅读 · 0 评论 -
线代基本定理2
线代基本定理21引言2定理3证明1引言线代基本定理一(看之前文章)告诉我们R(A)(A)(A)与N(AAA)的维度关系,我们希望知道它们的空间关系,平行?相交?垂直?线代基本定理2就告诉我们这些空间的位置关系。证明之前我们需要先证明行秩=列秩。假设行秩为rrr,列秩为ccc.列空间的特征向量为b1,b2,...bcb_1,b_2,...b_cb1,b2,...bc.矩阵AAA的每一列可以表示为b1,b2,...bcb_1,b_2,...b_cb1,b2,...bc的线性组合。a原创 2021-03-26 20:01:10 · 900 阅读 · 0 评论 -
线性代数基本定理1
线代基本定理11.中心主题2.定理描述3.证明1.中心主题线性代数讲的是向量空间的线性变换。将一个子空间映射到另一个子空间。特征值分解,Jordan标准型都是在寻找向量空间中的不变子空间。我们要在线性变换中寻找不变的量。2.定理描述秩-零度定理(rank-nullity theorem)将上图转为矩阵语言:矩阵A∈Rm∗nA \in R^{m*n}A∈Rm∗n,将一个n维空间映射到一个m维空间。rank(A)=dim(R(A))+dim(N(A))R(A)表示{y|y=Ax} A的值原创 2021-03-26 18:39:09 · 2013 阅读 · 0 评论