算法设计 第九章 PSPACE:一个超出NP的问题类

博客介绍了PSPACE多项式空间问题,指出PSPACE是多项式空间内可解决的判断问题,还阐述了P、NP与PSPACE的关系。同时介绍了PSPACE - Complete多项式空间完全问题,包括QSAT和竞争便利店选址问题,并证明竞争便利店选址问题为PSPACE - complete问题。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >



1 PSACE 多项式空间问题

1.1 PSPACE

P:多项式时间内可以求解的decision peoblem(判断是否)
PSPACE:多项式空间内可以解决的decision problem
时间可以不可以重用,空间可以重用。
判断时间复杂度,需要等到算法求解完成的最后一刻,计算用时。
判断空间复杂度,只需要计算需要的最大空间。
P ⊂ \subset NP

  • 一个算法在多项式时间内只能占用多项式数量的空间。

NP ⊂ \subset PSPACE

  • 0到 2 n − 1 2^n-1 2n1n位计数器
  • 3-SAT NPC问题
  • 尝试所有真值赋值,计数器代表每一位的数值,多项式时间内验证每个解。空间复杂度:计数器空间+多项式时间的验证算法。

P ⊂ \subset NP ⊂ \subset PSPACE

1.1 planning problem :二进制计算器

条件: C 1 , . . . , C n C_1,...,C_n C1,...,Cn
初识状态: c 0 c_0 c0
目标状态: c ∗ = { C 1 . . . C n } c^*=\{C_1...C_n\} c={C1...Cn}
操作: O 1 . . . O n O_1...O_n O1...On

在这里插入图片描述

2 PSPACE-Complete 多项式空间完全问题

2.1 QSAT

电路可满足性是天然的NPC问题,QSAT是天然的PSPACE-C问题。
Φ ( x 1 , … , x n ) = C 1 ∧ C 2 ⋯ ∧ C n \Phi(x_1,\dots,x_n)=C_1\wedge C_2\dots \wedge C_n Φ(x1,,xn)=C1C2Cn
我们问:
∃ x 1 ∀ x 2 … ∃ x n − 2 ∀ x n − 1 ∃ x n Φ ( x 1 , … , x n ) \exists x_1\forall x_2\dots \exists x_{n-2}\forall x_{n-1}\exists x_n\Phi(x_1,\dots,x_n) x1x2xn2xn1xnΦ(x1,,xn)
是否存在这样的真值赋值是的字句为真? 我们将该问题记做量化的3-SAT (Q-SAT)
普通的SAT问题可以记做
∃ x 1 ∃ x 2 … ∃ x n − 2 ∃ x n − 1 ∃ x n Φ ( x 1 , … , x n ) \exists x_1\exists x_2\dots \exists x_{n-2}\exists x_{n-1}\exists x_n\Phi(x_1,\dots,x_n) x1x2xn2xn1xnΦ(x1,,xn)
该问题的复杂度如下图所示
在这里插入图片描述
S ( n ) ≤ S ( n − 1 ) + p ( n ) S ( n ) ≤ n ∗ p ( n ) S(n)\leq S(n-1)+p(n)\\ S(n)\leq n*p(n) S(n)S(n1)+p(n)S(n)np(n)
Stockmeyer 和Meyer 在1973年证明了 QSAT是PSPACE完全问题。

QSAT可以等价的定义为竞争3-SAT必胜问题
第一个人挑选 x 1 x_1 x1的值,第二个人挑选 x 2 x_2 x2的值,如此进行下去,如果 Φ ( x 1 , . . . , x n ) = 1 \Phi(x_1,...,x_n)=1 Φ(x1,...,xn)=1则第一个获胜,等于0第二个人获胜。
第一个人能否必胜?QSAT问题。

2.2 Competitive facility location 竞争便利店选址问题

输入:G(V,E),每个节点权重 w i w_i wi,目标B
游戏:两个竞争者轮流选择节点,不允许邻居节点被选择。
问题:能保证第二个人至少 B B B的权重。
在这里插入图片描述

证明便利店选址问题为PSACPE-complete。将Q-SAT规约为该问题。

将竞争的SAT问题的instance转为竞争便利店选址问题的instance:
Φ ( x 1 , . . . , x n ) = C 1 ∧ C 2 . . . ∧ C k \Phi(x_1,...,x_n)=C_1\wedge C_2...\wedge C_k Φ(x1,...,xn)=C1C2...Ck
x i x_i xi x ˉ i \bar{x}_i xˉi的权重 1 0 i 10^i 10i x i x_i xi x ˉ i \bar{x}_i xˉi连结, C i C_i Ci与其变量连结。
B= 1 0 n − 1 + 1 0 n − 3 . . . + 1 0 2 + 1 10^{n-1}+10^{n-3}...+10^{2}+1 10n1+10n3...+102+1
在这里插入图片描述
两个用户轮流选点,选择的点为真。选择的子句节点为假。
如果第二个人可以选择到一个子句节点,则第二个人获胜,反之则否。
因为权重的原因,两人的选择顺序固定,只有在最后一步才能决出胜负,最后一步是第二个人选,如果有子句可以选,则他获胜。
如果在QSAT问题中,第一个人必胜,则所有子句可以满足,在竞争便利店问题中第一个人也获胜。
如果在竞争便利店问题在,第二人输,即不能保证最少的权重B,则在QSAT中第一个人必胜。
因此竞争的便利店选址问题为Pspace-complete问题。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值