第三章 随机过程


一、随机过程基本概念

1.基本概念

随机过程:随机过程包含两个概念,随机指随机变量,过程表示随时间变化。看做随机变量的延伸,在给定 t 1 t_1 t1时刻每一个样本函数 x i ( t ) x_i(t) xi(t)是一个确定的数值 x i ( t 1 ) x_i(t_1) xi(t1)。样本 x ( t 1 ) x(t_1) x(t1)是一个随机变量,有不同的样本值 { x 1 ( t 1 ) , … , x n ( t 1 ) } \{x_1(t_1),\dots,x_n(t_1)\} {x1(t1),,xn(t1)}。在任意时刻 x ( t ) x(t) x(t)都是一个随机变量。时间进程中处于不同时刻的随机变量的集合 { x 1 ( t ) , … , x n ( t ) } \{x_1(t),\dots,x_n(t)\} {x1(t),,xn(t)}

两个维度:不同时间 t t t,不同实现(样本,试验) x n ( t ) x_n(t) xn(t)

2.分布函数

ξ ( t ) \xi(t) ξ(t)表示一个随机过程。任意时刻 t 1 t_1 t1的值 ξ ( t 1 ) \xi(t_1) ξ(t1)是一个随机变量。
随机过程主要强调过程,过程即时间,每一个时刻都是随机变量。
一维分布函数:
F 1 ( x 1 , t 1 ) = P [ ξ ( t 1 ) ≤ x 1 ] F_1(x_1,t_1)=P[\xi(t_1)\leq x_1] F1(x1,t1)=P[ξ(t1)x1]
一维概率密度:
f 1 ( x 1 , t 1 ) = ∂ F 1 ( x 1 , t 1 ) ∂ x 1 f_1(x_1,t_1)=\frac{\partial F_1(x_1,t_1)}{\partial x_1} f1(x1,t1)=x1F1(x1,t1)
多维分布函数:
F n ( x 1 , … , x n ; t 1 , … , t n ) = P [ ξ ( t 1 ) ≤ x 1 , … , ξ ( t n ) ≤ x n ] F_n(x_1,\dots,x_n;t_1,\dots,t_n)=P[\xi(t_1)\leq x_1,\dots,\xi(t_n)\leq x_n] Fn(x1,,xn;t1,,tn)=P[ξ(t1)x1,,ξ(tn)xn]
多维概率密度:
f n ( x 1 , … , x n ; t 1 , … , t n ) = ∂ F 1 ( x 1 , … , x n ; t 1 , … , t n ) ∂ x 1 , … , x n f_n(x_1,\dots,x_n;t_1,\dots,t_n)=\frac{\partial F_1(x_1,\dots,x_n;t_1,\dots,t_n)}{\partial x_1,\dots,x_n} fn(x1,,xn;t1,,tn)=x1,,xnF1(x1,,xn;t1,,tn)

3.数字特征

均值:关于时间的函数
a ( t ) : = E [ ξ ( t ) ] = ∫ − ∞ + ∞ x f 1 ( x , t ) d t a(t):=E[\xi(t)]=\int_{-\infty}^{+\infty}xf_1(x,t)dt a(t):=E[ξ(t)]=+xf1(x,t)dt
方差:
D [ ξ ( t ) ] = E { [ ξ ( t ) − a ( t ) ] 2 } D[\xi(t)]=E\{[\xi(t)-a(t)]^2\} D[ξ(t)]=E{[ξ(t)a(t)]2}
均值和方差只与随机过程的一维概率密度函数有关,只能描述随机过程各个孤立时刻的特征,不能反映随机过程的内在联系。为了衡量两个时刻随机变量的关联程度,采用相关函数或者协方差函数。
协方差函数:
B ( t 1 , t 2 ) = E { [ ξ ( t 1 ) − a ( t 1 ) ] [ ξ ( t 2 ) − a ( t 2 ) ] } B(t_1,t_2)=E\{[\xi(t_1)-a(t_1)][\xi(t_2)-a(t_2)]\} B(t1,t2)=E{[ξ(t1)a(t1)][ξ(t2)a(t2)]}
相关函数:
R ( t 1 , t 2 ) = E [ ξ ( t 1 ) ξ ( t 2 ) ] B ( t 1 , t 2 ) = R ( t 1 , t 2 ) − a 1 ( t ) a 2 ( t ) R(t_1,t_2)=E[\xi(t_1)\xi(t_2)]\\ B(t_1,t_2)=R(t_1,t_2)-a_1(t)a_2(t) R(t1,t2)=E[ξ(t1)ξ(t2)]B(t1,t2)=R(t1,t2)a1(t)a2(t)

二、平稳随机过程

1.定义

ξ ( t ) \xi(t) ξ(t)的统计特性与时间起点无关,时间平移不影响其任何统计特性,简称严平稳随机过程。
数学表达:
f n ( x 1 , … , x n ; t 1 , … , t n ) = f n ( x 1 , … , x n ; t 1 + △ , … , t n + △ ) f_n(x_1,\dots,x_n;t_1,\dots,t_n)=f_n(x_1,\dots,x_n;t_1+\triangle,\dots,t_n+\triangle) fn(x1,,xn;t1,,tn)=fn(x1,,xn;t1+,,tn+)
一维概率密度与时间 t t t无关。
f 1 ( x 1 , t 1 ) = f 1 ( x 1 ) f_1(x_1,t_1)=f_1(x_1) f1(x1,t1)=f1(x1)
二维概率密度只与时间差 τ \tau τ有关。多维的依次类推,相当于减少一个自由度。
根据概率密度推导出期望与时间无关,自相关函数只有时间差 τ \tau τ有关。我们把满足该条件的过程定义为广义平稳随机过程。反之不成立。

2.各态历经性

随机过程是一个时间无限,实验次数无限的集合。实验次数无限难以实现,一次实验就能得到平稳过程的数字特征的特性叫做各态历经性。
假设 x ( t ) x(t) x(t)是一次实现。则
a = a ‾ = x ( t ) ‾ = lim ⁡ T → + ∞ 1 T ∫ − T / 2 + T / 2 x ( t ) d t R ( τ ) = R ( τ ) ‾ = x ( t ) x ( t + τ ) ‾ = lim ⁡ T → + ∞ 1 T ∫ − T / 2 + T / 2 x ( t ) x ( t + τ ) d t a=\overline {a}=\overline {x(t)}=\lim\limits_{T\to+\infty}\frac{1}{T}\int_{-T/2}^{+T/2}x(t)dt \\ R(\tau)=\overline {R(\tau)}=\overline {x(t)x(t+\tau)}=\lim\limits_{T\to+\infty}\frac{1}{T}\int_{-T/2}^{+T/2}x(t)x(t+\tau)dt a=a=x(t)=T+limT1T/2+T/2x(t)dtR(τ)=R(τ)=x(t)x(t+τ)=T+limT1T/2+T/2x(t)x(t+τ)dt
各态历经性意味着随机过程的任意一次实现都经历了所有可能状态。
注意:各态历经性==》平稳过程 反之则否。

3.自相关函数与功率谱密度

维纳-辛钦定理:平稳过程的功率谱密度 P ξ ( f ) P_{\xi}(f) Pξ(f)与其相关函数 R ( τ ) R(\tau) R(τ)是傅里叶变换对。 R ( τ ) ⇔ P ξ ( f ) R(\tau)\Leftrightarrow P_{\xi}(f) R(τ)Pξ(f)

三、高斯随机过程

1.定义

n维概率密度服从正态分布。

2.性质

高斯过程是广义平稳的,均值与时间无关,协方差只与时间差有关。

3.高斯随机变量

f ( x ) = 1 2 π σ exp ⁡ ( − ( x − a ) 2 2 σ 2 ) f(x)=\frac{1}{\sqrt{2\pi \sigma}}\exp(-\frac{(x-a)^2}{2\sigma^2}) f(x)=2πσ 1exp(2σ2(xa)2)
标准化之后:
f ( x ) = 1 2 π exp ⁡ ( − x 2 2 ) f(x)=\frac{1}{\sqrt{2\pi}}\exp(-\frac{x^2}{2}) f(x)=2π 1exp(2x2)
积分为1==》 ∫ − ∞ + ∞ exp ⁡ ( − x 2 2 ) d x = 2 π \int_{-\infty}^{+\infty}\exp(-\frac{x^2}{2})dx=\sqrt{2\pi} +exp(2x2)dx=2π
误差函数: e r f ( x ) = 2 π ∫ 0 x e − t 2 d t erf(x)=\frac{2}{\sqrt{\pi}}\int_{0}^{x}e^{-t^2}dt erf(x)=π 20xet2dt 递增, e r f ( 0 ) = 0 erf(0)=0 erf(0)=0, e r f ( ∞ ) = 1 erf(\infty)=1 erf()=1,奇函数。
互补误差函数: e r f c ( x ) = 1 − e r f ( x ) = 2 π ∫ x ∞ e − t 2 d t erfc(x)=1-erf(x)=\frac{2}{\sqrt{\pi}}\int_{x}^{\infty}e^{-t^2}dt erfc(x)=1erf(x)=π 2xet2dt

四、平稳随机过程通过线性系统

线性时不变系统可由其单位冲激响应 h ( t ) h(t) h(t)或者 H ( f ) H(f) H(f)表示。
ξ i ( t ) \xi_i(t) ξi(t)为输入过程,均值为 a a a,自相关函数为 R i ( τ ) R_i(\tau) Ri(τ),功率谱密度为 P i ( w ) P_i(w) Pi(w)

1.输出过程 ξ 0 ( t ) \xi_0(t) ξ0(t)的均值

E ( ξ 0 ( t ) ) = E [ ∫ − ∞ + ∞ h ( τ ) ξ i ( t − τ ) d τ ] = ∫ − ∞ + ∞ h ( τ ) E ( ξ i ( t − τ ) ) d τ = ∫ − ∞ + ∞ h ( τ ) E ( ξ i ( t ) ) d τ = a ∫ − ∞ + ∞ h ( τ ) τ = a H ( 0 ) E(\xi_0(t))=E[\int_{-\infty}^{+\infty} h(\tau) \xi_i(t-\tau)d\tau]=\int_{-\infty}^{+\infty}h(\tau)E(\xi_i(t-\tau))d\tau\\ =\int_{-\infty}^{+\infty}h(\tau)E(\xi_i(t))d\tau=a\int_{-\infty}^{+\infty}h(\tau)\tau=aH(0) E(ξ0(t))=E[+h(τ)ξi(tτ)dτ]=+h(τ)E(ξi(tτ))dτ=+h(τ)E(ξi(t))dτ=a+h(τ)τ=aH(0)

2.输出过程 ξ 0 ( t ) \xi_0(t) ξ0(t)的自相关函数

R 0 ( t 1 , t 1 + τ ) = E [ ξ 0 ( t 1 ) ξ 0 ( t 1 + τ ) ] = E [ ∫ − ∞ + ∞ h ( α ) ξ i ( t 1 − α ) d α ∫ − ∞ + ∞ h ( β ) ξ i ( t 1 − β ) d β ] = ∫ − ∞ + ∞ h ( α ) h ( β ) E [ ξ i ( t 1 − α ) ξ i ( t 1 + τ − β ) ] d α d β = ∫ − ∞ + ∞ h ( α ) h ( β ) R i ( τ + α − β ) d α d β = R 0 ( τ ) R_0(t_1,t_1+\tau)=E[\xi_0(t_1)\xi_0(t_1+\tau)]\\=E[\int_{-\infty}^{+\infty}h(\alpha)\xi_i(t_1-\alpha)d\alpha\int_{-\infty}^{+\infty}h(\beta)\xi_i(t_1-\beta)d\beta]\\=\int_{-\infty}^{+\infty}h(\alpha)h(\beta)E[\xi_i(t_1-\alpha)\xi_i(t_1+\tau-\beta)]d\alpha d\beta\\ =\int_{-\infty}^{+\infty}h(\alpha)h(\beta)R_i(\tau+\alpha-\beta)d\alpha d\beta\\ =R_0(\tau) R0(t1,t1+τ)=E[ξ0(t1)ξ0(t1+τ)]=E[+h(α)ξi(t1α)dα+h(β)ξi(t1β)dβ]=+h(α)h(β)E[ξi(t1α)ξi(t1+τβ)]dαdβ=+h(α)h(β)Ri(τ+αβ)dαdβ=R0(τ)

3.输出过程 ξ 0 ( t ) \xi_0(t) ξ0(t)的功率谱密度

P 0 ( f ) = ∫ − ∞ + ∞ R 0 ( τ ) e − j w τ d τ = ∣ H ( f ) ∣ 2 P i ( f ) P_0(f)=\int_{-\infty}^{+\infty}R_0(\tau)e^{-jw\tau}d\tau=|H(f)|^2P_i(f) P0(f)=+R0(τ)ejwτdτ=H(f)2Pi(f)

4.输出过程 ξ 0 ( t ) \xi_0(t) ξ0(t)的概率密度

高斯过程经过线性变换依旧是高斯过程。

五、窄带随机过程

1.定义

随机过程 ξ ( t ) \xi(t) ξ(t)的谱密度集中在中心频谱 f c f_c fc附近相对较窄的频带范围 △ f \triangle f f. △ f < < f c \triangle f<<f_c f<<fc
波形:
ξ ( t ) = a ξ ( t ) c o s [ w c t + φ ξ ( t ) ] = ξ c ( t ) c o s w c t − ξ s ( t ) s i n w c t a ξ ( t ) ≥ 0 \xi(t)=a_{\xi}(t)cos[w_ct+\varphi_\xi(t)] \\ =\xi_c(t)cosw_ct-\xi_s(t)sinw_ct\\ a_{\xi}(t)\ge0 ξ(t)=aξ(t)cos[wct+φξ(t)]=ξc(t)coswctξs(t)sinwctaξ(t)0
其中 ξ c ( t ) = a ξ ( t ) c o s ( φ ξ ( t ) ) \xi_c(t)=a_{\xi}(t)cos(\varphi_\xi(t)) ξc(t)=aξ(t)cos(φξ(t)), ξ s ( t ) = a ξ ( t ) s i n ( φ ξ ( t ) ) \xi_s(t)=a_{\xi}(t)sin(\varphi_\xi(t)) ξs(t)=aξ(t)sin(φξ(t)), a ξ a_{\xi} aξ为随机包络, φ ξ ( t ) \varphi_\xi(t) φξ(t)为随机相位, w c w_c wc为中心角频率.
其统计特性和略

六、正弦波加窄带高斯噪声

1.定义

r ( t ) = A c o s ( w c t + θ ) + n ( t ) n ( t ) = n c ( t ) c o s ( w c t ) − n s ( t ) s i n ( w c t ) r(t)=Acos(w_ct+\theta)+n(t)\\ n(t)=n_c(t)cos(w_ct)-n_s(t)sin(w_ct) r(t)=Acos(wct+θ)+n(t)n(t)=nc(t)cos(wct)ns(t)sin(wct)
噪声均值为0,方差为 σ n 2 \sigma_n^2 σn2, θ \theta θ为随机相位在(0,2 π \pi π)均匀分布,A, w c w_c wc假定已知

七、 高斯白噪声与带限白噪声

1.白噪声:

白噪声的双边谱密度或者单边谱密度:
P n ( f ) = n 0 2 ( − ∞ ≤ f ≤ + ∞ ) P n ( f ) = n 0 ( 0 ≤ f ≤ + ∞ ) P_n(f)=\frac{n_0}{2} (-\infty \leq f \leq +\infty) \\ P_n(f)=n_0 (0 \leq f \leq +\infty) Pn(f)=2n0(f+)Pn(f)=n0(0f+)

2. 低通白噪声:

只让频率低的通过 ∣ f ∣ ≤ f H |f|\leq f_{H} ffH
P n ( f ) = n 0 2 i f ∣ f ∣ ≤ f H e l s e 0 R ( τ ) = n 0 f H s i n 2 π f H τ 2 π f H τ P_n(f)=\frac{n_0}{2} \qquad if \qquad |f|\leq f_H \qquad else \qquad 0\\ R(\tau)=n_0f_H\frac{sin2 \pi f_H\tau}{2\pi f_H\tau} Pn(f)=2n0ifffHelse0R(τ)=n0fH2πfHτsin2πfHτ

3.带通白噪声:

H ( f ) = 1 P n ( f ) = n 0 2 f c − B 2 ≤ ∣ f ∣ ≤ f c + B 2 R ( τ ) = n 0 B s i n π B τ π B τ c o s 2 π f c τ H(f)=1 \qquad \\ P_n(f)=\frac{n_0}{2} \quad f_c-\frac{B}{2}\leq|f|\leq f_c+\frac{B}{2}\\ R(\tau)=n_0B\frac{sin\pi B \tau}{\pi B\tau}cos2\pi f_c\tau H(f)=1Pn(f)=2n0fc2Bffc+2BR(τ)=n0BπBτsinπBτcos2πfcτ
B为通带宽度。

  • 0
    点赞
  • 16
    收藏
    觉得还不错? 一键收藏
  • 1
    评论
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值