LC谐振电路

本文探讨了电感感抗XL和电容容抗XC与输入频率f的关系。随着频率增加,感抗XL增大导致低通滤波电路的增益降低,而容抗XC减小使得高通滤波电路增益提升。在LC电路中,谐振频率f=1/(2π√LC)时,XL=XC,电路呈现纯阻性。这些概念对于理解和设计滤波器至关重要。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

电感感抗、电容容抗与输入频率f的关系

  • 感抗:

X L = 2 π f L = ω L XL=2πfL=ωL XL=2πfL=ωL
在这里插入图片描述

在如上电路中,经分析,可得增益Gain:
G a i n = V o u t / V i n = R / ( X L + R ) = R / ( 2 π f L + R ) Gain=Vout/Vin =R/(XL+R) =R/(2πfL+R) Gain=Vout/Vin=R/(XL+R)=R/(2πfL+R)
由上面公式可知,频率增大,感抗增大,增益减小(低通滤波电路);

  • 容抗:容抗大小与频率成反比;

X C = 1 / 2 π f c XC=1/2πfc XC=1/2πfc

在这里插入图片描述

在如上电路中,经分析,可得增益Gain:
G a i n = V o u t / V i n = R / ( X C + R ) = R / ( 1 / 2 π f c + R ) Gain=Vout/Vin =R/(XC+R) =R/(1/2πfc+R) Gain=Vout/Vin=R/(XC+R)=R/(1/2πfc+R)
由上面公式可知,频率增大,容抗减小,增益增大(高通滤波电路);*

LC电路

在这里插入图片描述

把R、C均引入电路,当电源频率从0开始增大到谐振频率,电路容抗大于感抗,呈现容性;大于谐振频率之后,电路感抗大于容抗,呈感性;谐振时:
X L = X C XL=XC XL=XC
则谐振频率:
f = 1 / ( 2 π √ L C ) f=1/(2π√LC) f=1/(2πLC)

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值