线性回归
线性回归的定义:以一元线性回归为例,在一系列的点中,找一条直线,使得这条直线与这些点的距离之和最小。
代码编写
数据data
首先我们需要给出一系列的点作为线性回归的数据,使用numpy来存储这些点。
x_train = np.array([[3.3], [4.4], [5.5], [6.71], [6.93], [4.168],
[9.779], [6.182], [7.59], [2.167], [7.042],
[10.791], [5.313], [7.997], [3.1]], dtype=np.float32)
y_train = np.array([[1.7], [2.76], [2.09], [3.19], [1.694], [1.573],
[3.366], [2.596], [2.53], [1.221], [2.827],
[3.465], [1.65], [2.904], [1.3]], dtype=np.float32)
显示结果如下:
由于pytorch的基本处理单元是Tensor,我们需要将numpy转换成Tensor。
x_train = torch.from_numpy(x_train)
y_train = torch.from_numpy(y_train)
模型搭建
搭建线性回归模型
class LinearRegression(nn.Module):
def __init__(self):
super(LinearRegression, self).__init__()
self.linear = nn.Linear(1, 1) # input and output is 1 dimension
def forward(self, x):
out = self.linear(x)
return out
model = LinearRegression()
nn.Linear表示的是 y=w*x+b,里面的两个参数都是1,表示的是x是1维,y也是1维。
定义loss和optimizer,就是误差和优化函数
criterion = nn.MSELoss()
optimizer = optim.SGD(model.parameters(), lr=1e-4)
这里使用的是最小二乘loss(做分类问题时,多数使用的是cross entropy loss,交叉熵损失函数)
优化函数使用的是随机梯度下降,注意需要将model的参数model.parameters()传进去让这个函数知道他要优化的参数是那些。
train
接着开始训练
num_epochs = 1000
for epoch in range(num_epochs):
inputs = Variable(x_train)
target = Variable(y_train)
# forward
out = model(inputs) # 前向传播
loss = criterion(out, target) # 计算loss
# backward
optimizer.zero_grad() # 梯度归零
loss.backward() # 方向传播
optimizer.step() # 更新参数
if (epoch+1) % 20 == 0:
print('Epoch[{}/{}], loss: {:.6f}'.format(epoch+1,
num_epochs,
loss.data[0]))
第一个循环表示每个epoch,接着开始前向传播,然后计算loss,然后反向传播,接着优化参数,特别注意的是在每次反向传播的时候需要将参数的梯度归零,即
optimzier.zero_grad()
validation
训练完成之后我们就可以开始测试模型了
model.eval()
predict = model(Variable(x_train))
predict = predict.data.numpy()
特别注意的是需要用 model.eval(),让model变成测试模式,这主要是对dropout和batch normalization的操作在训练和测试的时候是不一样的
最后可以得到这个结果
以及loss的结果
完整代码
# encoding: utf-8
"""
@author: liaoxingyu
@contact: sherlockliao01@gmail.com
"""
import matplotlib.pyplot as plt
import numpy as np
import torch
from torch import nn
from torch.autograd import Variable
x_train = np.array([[3.3], [4.4], [5.5], [6.71], [6.93], [4.168],
[9.779], [6.182], [7.59], [2.167], [7.042],
[10.791], [5.313], [7.997], [3.1]], dtype=np.float32)
y_train = np.array([[1.7], [2.76], [2.09], [3.19], [1.694], [1.573],
[3.366], [2.596], [2.53], [1.221], [2.827],
[3.465], [1.65], [2.904], [1.3]], dtype=np.float32)
x_train = torch.from_numpy(x_train)
y_train = torch.from_numpy(y_train)
# Linear Regression Model
class linearRegression(nn.Module):
def __init__(self):
super(linearRegression, self).__init__()
self.linear = nn.Linear(1, 1) # input and output is 1 dimension
def forward(self, x):
out = self.linear(x)
return out
model = linearRegression()
# 定义loss和优化函数
criterion = nn.MSELoss()
optimizer = torch.optim.SGD(model.parameters(), lr=1e-4)
# 开始训练
num_epochs = 1000
for epoch in range(num_epochs):
inputs = x_train
target = y_train
# forward
out = model(inputs)
loss = criterion(out, target)
# backward
optimizer.zero_grad()
loss.backward()
optimizer.step()
if (epoch+1) % 20 == 0:
print(f'Epoch[{epoch+1}/{num_epochs}], loss: {loss.item():.6f}')
model.eval()
with torch.no_grad():
predict = model(x_train)
predict = predict.data.numpy()
fig = plt.figure(figsize=(10, 5))
plt.plot(x_train.numpy(), y_train.numpy(), 'ro', label='Original data')
plt.plot(x_train.numpy(), predict, label='Fitting Line')
# 显示图例
plt.legend()
plt.show()
# 保存模型
torch.save(model.state_dict(), './linear.pth')