X-AnyLabeling标注工具的使用

X-AnyLabeling是一款基于Labelme和Anylabeling的增强工具,支持多种深度学习模型,如YOLO、DETR和SAM,提供中英文切换、快捷键定制、多任务模式等功能,简化标注过程并提升效率。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

前言

项目链接:https://github.com/CVHub520/X-AnyLabeling/tree/main

X-AnyLabeling 是一款全新的交互式自动标注工具,其基于 Labelme 和 Anylabeling 等诸多优秀的标注工具框架进行构建,在此基础上扩展并支持了许多丰富的模型和功能,并借助Segment Anything和 YOLO 系列等目前主流和经典的深度学习模型提供强大的 AI 能力支持。无须任何复杂配置,下载即用,大大降低用户使用成本,同时支持自定义模型和快捷键设置等,极大提升用户标注效率和使用体验!

X-AnyLabeling 具备以下优势:

  • 支持中英文一键切换,随心所欲;
  • 支持必要的快捷键操作,可自定义设置;
  • 支持CPU和GPU一键推理,可按需选取;
  • 提供详细的操作手册及交流社区,帮助用户快速解决问题;
  • 支持Windows、Linux和MacOS等多个主流的操作系统,同时支持用户自编译;
  • 提供多种标注样式,包括多边形、矩形、线段、点、圆形、文本等,以满足用户的多元化的需求.
  • 支持多种导出格式,包括 YOLO-txt、COCO-json、VOC-xml 以及图片掩码等,只需一键运行,即可满足日常训练所需标签样式。
  • 提供多种模型架构,包括但不仅限于YOLO系列、DETR系列和SAM系列等,可无缝衔接OpenMMLab、PaddlePaddle、timm等多个主流的深度学习框架,同时支持自定义模型导入。
  • 支持多种任务模式,包括目标检测、语义分割、姿态估计、人脸关键点回归、文本检测、识别和KIE(关键信息提取)标注等。

此外,为了加速模型推理速度,提供了多个量化版本及LRU缓冲机制,极大提升用户体验。

AI标注功能:

第一: 目标检测 & 语义分割

在这里插入图片描述提供了多个yolo的模型

第二:细粒度检测分类

细粒度与粗粒度概念对比

  • 粗粒度:类间appearance差异较大,如猫、鸟、鱼、飞机、汽车等
  • 细粒度:类间差异较小,如不同品种的犬类之间,不同型号的飞机之间等

例如下面的例子使用YOLOv5s-ResNet50模型进行分类
在这里插入图片描述

第三:人脸检测+关键点回归

例如下面的例子使用YOLOv6Lite-Face模型进行分类
在这里插入图片描述

第四:全身人体姿态估计

例如下面的例子使用YOLOX+DWPose模型进行分类
在这里插入图片描述

第五:车道线检测

例如下面的例子使用CLRNet-tusimple-r18模型进行分类
在这里插入图片描述

第六:医学图像分割

超声波乳腺癌分割 | 结直肠息肉分割 | 皮肤镜病变分割
在这里插入图片描述在这里插入图片描述

第七:自然图像分割

在这里插入图片描述使用SAM-ViT-B、SAM-ViT-L、SAM-ViT-H或者Mobile-SAM模型进行分割。

第八:OCR

文本标签是许多标注项目中的一项常见任务,但遗憾的是在 Labelme 和 LabelImg 中仍然没有得到很好的支持。X-AnyLabeling 中完美支持了这一项新功能。
在这里插入图片描述 图像文本标签:用户可以切换到编辑模式并更新图像的文本——可以是图像名称或图像描述。
文本检测标签:当用户创建新对象并切换到编辑模式时,可以更新对象的文本。
文本分组:想象一下,当使用 KIE(键信息提取)时,需要将文本分组到不同的字段中,包含标题和值。在这种情况下,你可以使用文本分组功能。当创建一个新对象时,我们同样可以通过选择它们并按G将其与其他对象组合在一起。分组的对象将用相同的颜色标记。当然,也可以按快捷键U取消组合。

参考链接:https://zhuanlan.zhihu.com/p/656703406

### X-AnyLabeling 视频标注使用教程 #### 启动应用程序 为了启动 X-AnyLabeling 应用程序并进入视频标注界面,需运行命令 `python3 anylabeling/app.py`[^3]。 #### 导入视频文件 一旦应用成功启动,在主界面上选择“导入媒体”,然后浏览至存储有目标视频的位置完成加载。这一步骤允许用户将待处理的视频素材加入到工作环境中以便后续操作。 #### 配置标注参数 通过访问 `/anylabeling/configs/auto_labeling` 文件夹下的配置文档来设定具体的标注选项,这些设置决定了如何对待分析的数据进行预处理以及采用何种方式进行自动化标签分配[^2]。 #### 开始自动或手动标注过程 对于视频内容而言,X-AnyLabeling 支持多种类型的标注模式,包括但不限于矩形框、多边形、旋转框等七种不同形式的对象定义方法[^4]。根据实际应用场景和个人偏好挑选最合适的工具来进行精准化标记作业。 #### 利用SAM 2 实现高效的视频分割 如果涉及到更复杂的任务比如逐帧精细划分,则可以借助内置的支持模块——SAM 2 来简化流程。按照官方指导完成必要的前期准备工作之后,即可轻松调用该特性执行高质量的画面切割动作。 #### 输出结果转换为 AVA 数据集格式 当所有的编辑完成后,可能还需要进一步调整导出的结果以适应特定框架的要求。例如,可参照相关指南学习怎样把最终版本转化为适合下游使用的 AVA 标准结构[^1]。 ```bash # 示例:启动X-AnyLabeling应用 $ python3 anylabeling/app.py ```
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值