人体关键点检测

文章详细介绍了MMPose的实战过程,包括安装MMPose和其依赖的pytorch、mmcv,以及使用mim进行安装。接着讲解了如何按照COCO格式处理数据集,利用Labelme配置cfg文件,并进行模型训练和验证。此外,还涉及到了mmdet的训练流程。最后,文章提出了一个作业,即应用MMPose进行中医耳朵相关的数据集训练和预测。
摘要由CSDN通过智能技术生成

title: MMPose实战
date: 2023-06-03 19:33:33
tags: [mmlab]


1.mmpose实战

[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-upB0nxeF-1685795464549)(https://fastly.jsdelivr.net/gh/weijia99/blog_image@main/1685794454339MMPose%E5%AE%9E%E6%88%98.png)]
在这里插入图片描述

主要包括安装,mmdet实战,mmpose实战等三部分

1.安装

安装方法,可以直接去看官网教程,主要是是首先下载pytorch,之后下载mmcv,使用mim来进行安装。然后在github下载源码,使用源码进行安装。难点包括网速原因(ladder或者是搜索加速网站)

建议新装一个环境,pytorch和mmcv要一一对应。我之前是2.0.安装之后无法训练,是版本原因。所以重装了一个conda环境。

2.mmdet

mmlab代码的整体训练流程

  1. 数据集同意处理程coco的格式,使用lableme
  2. 设置cfg配置文件,这个歌文件包括模型,优化器,超参数,数据集还有pipeline,和权重
  3. 使用train来训练上述cfg或者是分布式训练使用bash脚本bash dist——train模型cfg
  4. 之后就是使用test来进行验证文件 test 模型 +pth进行验证
  5. 之后就是预测,一般使用命令行得到结果

3.mmpose

与mmdet同理,还是多个步骤

最后一步是集合mmdet的权重+mmpose的权重来指定向下来进行预测

4.作业

关于中医耳朵

  1. 首先是数据集下载,使用bypy这个python包进行下载
  2. 使用mmdet的训练流程来进行训练
  3. 使用mmposexunlliucheng进行训练
  4. 使用test来进行计算准确率
  5. 集合上述两个一起进行结果预测
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值