信号与系统的仿真习题一

本文通过MATLAB代码演示了DTFT计算、三阶巴特沃斯低通滤波器的频率响应以及RC电路的信号处理效果。对于DTFT,展示了a=±0.9时的幅度频谱;对于巴特沃斯滤波器,绘制了幅度响应和相位响应曲线;RC电路分析表明,系统对低频分量有较大衰减,表现为高通特性。
摘要由CSDN通过智能技术生成

一、用freqz函数计算信号的DTFT的值,试画出a=±0.9时F(e^jΩ)=1/(1-ae^(-jΩ))的幅度频谱。

相关程序如下:

clc;
clear;
close all;
figure(1);
image=imread('DTFT_freqz.jpg');
%image=imrotate(image,90);
imshow(image);
b=[1];
a1=[1 -0.9];a2=[1 0.9];
w=linspace(0,2*pi,512);%抽样点w
h1=freqz(b,a1,w);%h1为复数
h2=freqz(b,a2,w);
plot(w/pi,abs(h1),w/pi,abs(h2),':');
legend('\alpha=0.9','\alpha=-0.9');
title('序列f[k]=(a^k)u[k]的频谱');

运行结果如下:

 二、分析系统的频率响应
三阶归一化的巴特沃斯低通滤波器的频率响应为H(jw)=1/[(jw)^3+2(jw)^2+2(jw)+1]
试画出系统的幅度响应|H(jw)|和相位响应φ(w)

程序如下:

clc;
clear;
close all;
figure(1);
image=imread('frequencyresponse_magnitude_phase.jpg');
%image=imrotate(image,90);
imshow(image);
w=linspace(0,5,200);
b=[1];
a=[1 2 2 1];
H=freqs(b,a,w);
figure;
subplot 211;
plot(w,abs(H));
set(gca,'xtick',[0 1 2 3 4 5]);
set(gca,'ytick',[0 0.4 0.707 1]);grid;
xlabel('\omega');
ylabel('|H(j\omega)|');
subplot 212;
plot(w,angle(H));
set(gca,'xtick',[0 1 2 3 4 5]);grid;
xlabel('\omega');
ylabel('phi(\omega)');

运行结果如下:

 三、分析系统的频率响应
结论:信号通过系统后,信号的低频分量衰减比较大,显然该系统是一个简单的高通滤波器

 程序如下:

clc;
clear;
close all;
figure(1);
image=imread('frequencyresponse_RCcircuit.jpg');
%image=imrotate(image,90);
imshow(image);
RC=0.04;
t=linspace(-2,2,1024);
w1=5;w2=100;
H1=1i*w1/(1i*w1+1/RC);
H2=1i*w2/(1i*w2+1/RC);
f=cos(5*t)+cos(100*t);
y=abs(H1)*cos(w1*t+angle(H1))+abs(H2)*cos(w2*t+angle(H2));
subplot 211;
plot(t,f);
ylabel('f(t)');
xlabel('Time(s)');
subplot 212;
plot(t,y);
ylabel('y(t)');
xlabel('Time(s)');

运行结果如下:

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值