B站up主“刘二大人”视频 笔记
本课程的主要任务是利用torch包的requires_grad自动求导,构建反向传播模型:
导入numpy和matplotlib库;
导入数据 x_data 和 y_data;
初始化一个w数值,这里要用torch.Tensor构建;
把w的 requires_grad 参数打开;(重点)
定义前向传播函数:
forward:输出是预测值y_hat
定义损失函数:
loss:损失函数定义为MSE:均方根误差
定义梯度计算函数:
gradient: 需要根据反向传播,计算出代价函数对于权重的梯度,计算结果为grad += 2 * x * (x * w - y);
创建两个空列表,因为后面绘图的时候要用:
开始训练:
外层循环,循环的次数epoch可以自定义:
内层循环:核心计算内容
从数据集中,按数据对儿取出自变量x_val和真实值y_val;
直接调用loss函数,计算单个数据的损失数值;
用backward函数直接对损失值做反向传播;
核心来了——更新权重:
对 w 的 grad.data 做更新,这是重要一步,也是内容非常丰富的地方,不仅是更新了权重,里面还有关于 tensor 的其他基础知识, data 和 grad 的关系, data 是不会构建计算图的,而 grad 是在构建计算图模型;
此处仍不涉及权重清零的问题(TBD);
随意打印想要看到的内容,一般是打印x_val、y_val、loss_val;
在循环中要把计算的结果,放进之前的空列表,用于绘图;
在获得了打印所需的数据列表只有,模式化地打印图像:
程序如下:
import torch
import matplotlib.pyplot as plt
x_data = [1.0, 2.0, 3.0]
y_data = [2.0, 4.0, 6.0]
w = torch.Tensor([1.0])
w.requires_grad = True
def forward(x):
return x * w # x_tensor(张量)与w_tensor(张量)数乘
def loss(x, y): # 构建计算图
y_pre = forward(x)
return (y_pre - y) ** 2
epoch_list = [] # 权重
cost_list = [] # 对应权重的损失值
print('predict (before training)', 4, forward(4).item())
for epoch in range(100):
for x, y in zip(x_data, y_data):
l = loss(x, y) # 前馈 到此,整个计算图构建完成
l.backward() # 反馈
print('\tgrad:', x, y, w.grad.item()) # w.grad.item()表示把W的梯度直接拿出来变成标量
w.data = w.data - 0.01 * w.grad.data # w.grad会建立计算图,而w.grad.data不会建立计算图
w.grad.data.zero_() # 把权重W的梯度数据全部清零
print('progress:', epoch, l.item())
epoch_list.append(epoch)
cost_list.append(l.item())
print('predict (after training)', 4, forward(4).item())
plt.plot(epoch_list, cost_list)
plt.ylabel('cost')
plt.xlabel('epoch')
plt.grid()
plt.show()
运行结果如下:
视频截图:
矩形求导等运算参考书籍——matrix cookbook
为了提高模型复杂度,防止计算过程对计算式进行化简,要增加激活函数(非线性变换函数),目的是为了增加网络复杂性和非线性
每调用一次loss函数,就动态的构建一次计算图
只要一做backward,计算图便被释放了
L(l)是一个tensor