1.tensor(data,requires_grad=True)
该tensor后续会被计算梯度,tensor所有的操作都会被记录在grad_fn
2.with torch.no_grad():
其中的操作并不会被追踪
3.反向传播
output.backward()
4.获取梯度:x.grad,累加梯度
所以,每次反向传播之前需要先把梯度置为0
5.tensor.data:
在tensor的required_grad=False,tensor.data和tensor等价
required_grad=True时,tensor.data仅仅是获取tensor中的数据
6.tensor.numpy():
requires_grad=True不能够直接转换,需要使用tensor.detach().numpy(),detach实现的是对数据的深拷贝