pytorch计算反向传播的函数介绍

1.tensor(data,requires_grad=True)

该tensor后续会被计算梯度,tensor所有的操作都会被记录在grad_fn

2.with torch.no_grad():

其中的操作并不会被追踪

3.反向传播

output.backward()

4.获取梯度:x.grad,累加梯度

所以,每次反向传播之前需要先把梯度置为0

5.tensor.data:

在tensor的required_grad=False,tensor.data和tensor等价

required_grad=True时,tensor.data仅仅是获取tensor中的数据

6.tensor.numpy():

requires_grad=True不能够直接转换,需要使用tensor.detach().numpy(),detach实现的是对数据的深拷贝

 

 

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值