1.相关模型及调参方法
1.1 相关模型介绍
1.2 模型对比与性能评估
1.2.1 逻辑回归
逻辑回归 | |
---|---|
优点 | 缺点 |
训练速度较快,分类的时候,计算量仅仅只和特征的数目相关; | 逻辑回归需要预先处理缺失值和异常值 |
简单易理解,模型的可解释性非常好,从特征的权重可以看到不同的特征对最后结果的影响; | 不能用Logistic回归去解决非线性问题,因为Logistic的决策面是线性的; |
适合二分类问题,不需要缩放输入特征; | 对多重共线性数据较为敏感,且很难处理数据不平衡的问题; |
内存资源占用小,只需要存储各个维度的特征值; | 准确率并不是很高,因为形式非常简单,很难去拟合数据的真实分布; |
1.2.2 决策树模型
决策树模型 | |
---|---|
优点 | 缺点 |
简单直观,生成的决策树可以可视化展示 | 决策树算法非常容易过拟合,导致泛化能力不强(可进行适当的剪枝) |
数据不需要预处理,不需要归一化,不需要处理缺失数据 | 采用的是贪心算法,容易得到局部最优解 |
既可以处理离散值,也可以处理连续值 |
1.2.3 集成模型集成方法(ensemble method)
通过组合多个学习器来完成学习任务,通过集成方法,可以将多个弱学习器组合成一个强分类器,因此集成学习的泛化能力一般比单一分类器要好。
集成方法主要包括Bagging
和Boosting
。
Bagging和Boosting都是将已有的分类或回归算法通过一定方式组合起来,形成一个更加强大的分类。两种方法都是把若干个分类器整合为一个分类器的方法,只是整合的方式不一样,最终得到不一样的效果。
常见的基于Baggin思想的集成模型有:随机森林。
基于Boosting思想的集成模型有:Adaboost、GBDT、XgBoost、LightGBM等。
Baggin和Boosting的区别如下: | |
---|---|
样本选择上 | Bagging方法的训练集是从原始集中有放回的选取,所以从原始集中选出的各轮训练集之间是独立的;而Boosting方法需要每一轮的训练集不变,只是训练集中每个样本在分类器中的权重发生变化。而权值是根据上一轮的分类结果进行调整 |
样例权重上 | Bagging方法使用均匀取样,所以每个样本的权重相等;而Boosting方法根据错误率不断调整样本的权值,错误率越大则权重越大 |
预测函数上 | Bagging方法中所有预测函数的权重相等;而Boosting方法中每个弱分类器都有相应的权重,对于分类误差小的分类器会有更大的权重 |
并行计算上 | Bagging方法中各个预测函数可以并行生成;而Boosting方法各个预测函数只能顺序生成,因为后一个模型参数需要前一轮模型的结果。 |
1.2.4 模型评估方法
对于模型来说,其在训练集上面的误差我们称之为训练误差或者经验误差,而在测试集上的误差称之为测试误差。
对于数据集的划分,我们通常要保证满足以下两个条件:
- 训练集和测试集的分布要与样本真实分布一致,即训练集和测试集都要保证是从样本真实分布中独立同分布采样而得;
- 训练集和测试集要互斥
对于数据集的划分有三种方法:留出法,交叉验证法和自助法
- 对于数据量充足的时候,通常采用留出法或者k折交叉验证法来进行训练/测试集的划分;
- 对于数据集小且难以有效划分训练/测试集时使用自助法;
- 对于数据集小且可有效划分的时候最好使用留一法来进行划分,因为这种方法最为准确
2. 调参代码
导入相关包
import pandas as pd
import numpy as np
from sklearn.metrics import f1_score
import os
import seaborn as sns
import matplotlib.pyplot as plt
import warnings
warnings.filterwarnings("ignore")
读取数据
reduce_mem_usage
函数通过调整数据类型,帮助我们减少数据在内存中占用的空间
def reduce_mem_usage(df):
start_mem = df.memory_usage().sum() / 1024**2
print('Memory usage of dataframe is {:.2f} MB'.format(start_mem))
for col in df.columns:
col_type = df[col].dtype
if col_type != object:
c_min = df[col].min()
c_max = df[col].max()
if str(col_type)[:3] == 'int':
if c_min > np.iinfo(np.int8).min and c_max < np.iinfo(np.int8).max:
df[col] = df[col].astype(np.int8)
elif c_min > np.iinfo(np.int16).min and c_max < np.iinfo(np.int16).max:
df[col] = df[col].astype(np.int16)
elif c_min > np.iinfo(np.int32).min and c_max < np.iinfo(np.int32).max:
df[col] = df[col].astype(np.int32)
elif c_min > np.iinfo(np.int64).min and c_max < np.iinfo(np.int64).max:
df[col] = df[col].astype(np.int64)
else:
if c_min > np.finfo(np.float16).min and c_max < np.finfo(np.float16).max:
df[col] = df[col].astype(np.float16)
elif c_min > np.finfo(np.float32).min and c_max < np.finfo(np.float32).max:
df[col] = df[col].astype(np.float32)
else:
df[col] = df[col].astype(np.float64)
else:
df[col] = df[col].astype('category')
end_mem = df.memory_usage().sum() / 1024**2
print('Memory usage after optimization is: {:.2f} MB'.format(end_mem))
print('Decreased by {:.1f}%'.format(100 * (start_mem - end_mem) / start_mem))
return df
# 读取数据
data = pd.read_csv('data/train.csv')
# 简单预处理
data_list = []
for items in data.values:
data_list.append([items[0]] + [float(i) for i in items[1].split(',')] + [items[2]])
data = pd.DataFrame(np.array(data_list))
data.columns = ['id'] + ['s_'+str(i) for i in range(len(data_list[0])-2)] + ['label']
data = reduce_mem_usage(data)
简单建模
基于树模型的算法特性,异常值、缺失值处理可以跳过,但是对于业务较为了解的同学也可以自己对缺失异常值进行处理,效果可能会更优于模型处理的结果。
注:以下建模的据集并未构造任何特征,直接使用原特征。本次主要任务还是模建模调参。
建模之前的预操作
from sklearn.model_selection import KFold
# 分离数据集,方便进行交叉验证
X_train = data.drop(['id','label'], axis=1)
y_train = data['label']
# 5折交叉验证
folds = 5
seed = 2021
kf = KFold(n_splits=folds, shuffle=True, random_state=seed)
因为树模型中没有f1-score评价指标,所以需要自定义评价指标,在模型迭代中返回验证集f1-score变化情况。
def f1_score_vali(preds, data_vali):
labels = data_vali.get_label()
preds = np.argmax(preds.reshape(4, -1), axis=0)
score_vali = f1_score(y_true=labels, y_pred=preds, average='macro')
return 'f1_score', score_vali, True
使用Lightgbm进行建模
"""对训练集数据进行划分,分成训练集和验证集,并进行相应的操作"""
from sklearn.model_selection import train_test_split
import lightgbm as lgb
# 数据集划分
X_train_split, X_val, y_train_split, y_val = train_test_split(X_train, y_train, test_size=0.2)
train_matrix = lgb.Dataset(X_train_split, label=y_train_split)
valid_matrix = lgb.Dataset(X_val, label=y_val)
params = {
"learning_rate": 0.1,
"boosting": 'gbdt',
"lambda_l2": 0.1,
"max_depth": -1,
"num_leaves": 128,
"bagging_fraction": 0.8,
"feature_fraction": 0.8,
"metric": None,
"objective": "multiclass",
"num_class": 4,
"nthread": 10,
"verbose": -1,
}
"""使用训练集数据进行模型训练"""
model = lgb.train(params,
train_set=train_matrix,
valid_sets=valid_matrix,
num_boost_round=2000,
verbose_eval=50,
early_stopping_rounds=200,
feval=f1_score_vali)
对验证集进行预测
val_pre_lgb = model.predict(X_val, num_iteration=model.best_iteration)
preds = np.argmax(val_pre_lgb, axis=1)
score = f1_score(y_true=y_val, y_pred=preds, average='macro')
print('未调参前lightgbm单模型在验证集上的f1:{}'.format(score))
使用5折交叉验证进行模型性能评估
"""使用lightgbm 5折交叉验证进行建模预测"""
cv_scores = []
for i, (train_index, valid_index) in enumerate(kf.split(X_train, y_train)):
print('************************************ {} ************************************'.format(str(i+1)))
X_train_split, y_train_split, X_val, y_val = X_train.iloc[train_index], y_train[train_index], X_train.iloc[valid_index], y_train[valid_index]
train_matrix = lgb.Dataset(X_train_split, label=y_train_split)
valid_matrix = lgb.Dataset(X_val, label=y_val)
params = {
"learning_rate": 0.1,
"boosting": 'gbdt',
"lambda_l2": 0.1,
"max_depth": -1,
"num_leaves": 128,
"bagging_fraction": 0.8,
"feature_fraction": 0.8,
"metric": None,
"objective": "multiclass",
"num_class": 4,
"nthread": 10,
"verbose": -1,
}
model = lgb.train(params,
train_set=train_matrix,
valid_sets=valid_matrix,
num_boost_round=2000,
verbose_eval=100,
early_stopping_rounds=200,
feval=f1_score_vali)
val_pred = model.predict(X_val, num_iteration=model.best_iteration)
val_pred = np.argmax(val_pred, axis=1)
cv_scores.append(f1_score(y_true=y_val, y_pred=val_pred, average='macro'))
print(cv_scores)
print("lgb_scotrainre_list:{}".format(cv_scores))
print("lgb_score_mean:{}".format(np.mean(cv_scores)))
print("lgb_score_std:{}".format(np.std(cv_scores)))
2.1 贝叶斯调参
贝叶斯调参
在使用之前需要先安装包bayesian-optimization
,运行如下命令即可:
pip install bayesian-optimization
贝叶斯调参的主要思想是:
给定优化的目标函数(广义的函数,只需指定输入和输出即可,无需知道内部结构以及数学性质),通过不断地添加样本点来更新目标函数的后验分布(高斯过程,直到后验分布基本贴合于真实分布)。简单的说,就是考虑了上一次参数的信息,从而更好的调整当前的参数。
贝叶斯调参的步骤如下:
- 定义优化函数(rf_cv)
- 建立模型
- 定义待优化的参数
- 得到优化结果,并返回要优化的分数指标
from sklearn.model_selection import cross_val_score
from sklearn.metrics import make_scorer,f1_score
"""定义优化函数"""
def rf_cv_lgb(num_leaves, max_depth, bagging_fraction, feature_fraction, bagging_freq, min_data_in_leaf,
min_child_weight, min_split_gain, reg_lambda, reg_alpha):
# 建立模型
model_lgb = lgb.LGBMClassifier(boosting_type='gbdt', objective='multiclass', num_class=4,
learning_rate=0.1, n_estimators=5000,
num_leaves=int(num_leaves), max_depth=int(max_depth),
bagging_fraction=round(bagging_fraction, 2), feature_fraction=round(feature_fraction, 2),
bagging_freq=int(bagging_freq), min_data_in_leaf=int(min_data_in_leaf),
min_child_weight=min_child_weight, min_split_gain=min_split_gain,
reg_lambda=reg_lambda, reg_alpha=reg_alpha,
n_jobs= 8
)
f1 = make_scorer(f1_score, average='micro')
val = cross_val_score(model_lgb, X_train_split, y_train_split, cv=5, scoring=f1).mean()
return val
from bayes_opt import BayesianOptimization
"""定义优化参数"""
bayes_lgb = BayesianOptimization(
rf_cv_lgb,
{
'num_leaves':(10, 200),
'max_depth':(3, 20),
'bagging_fraction':(0.5, 1.0),
'feature_fraction':(0.5, 1.0),
'bagging_freq':(0, 100),
'min_data_in_leaf':(10,100),
'min_child_weight':(0, 10),
'min_split_gain':(0.0, 1.0),
'reg_alpha':(0.0, 10),
'reg_lambda':(0.0, 10),
}
)
"""开始优化"""
bayes_lgb.maximize(n_iter=10)
"""显示优化结果"""
bayes_lgb.max
"""调整一个较小的学习率,并通过cv函数确定当前最优的迭代次数"""
base_params_lgb = {
'boosting_type': 'gbdt',
'objective': 'multiclass',
'num_class': 4,
'learning_rate': 0.01,
'num_leaves': 138,
'max_depth': 11,
'min_data_in_leaf': 43,
'min_child_weight':6.5,
'bagging_fraction': 0.64,
'feature_fraction': 0.93,
'bagging_freq': 49,
'reg_lambda': 7,
'reg_alpha': 0.21,
'min_split_gain': 0.288,
'nthread': 10,
'verbose': -1,
}
cv_result_lgb = lgb.cv(
train_set=train_matrix,
early_stopping_rounds=1000,
num_boost_round=20000,
nfold=5,
stratified=True,
shuffle=True,
params=base_params_lgb,
feval=f1_score_vali,
seed=0
)
print('迭代次数{}'.format(len(cv_result_lgb['f1_score-mean'])))
print('最终模型的f1为{}'.format(max(cv_result_lgb['f1_score-mean'])))
建立最终模型并对验证集进行验证
import lightgbm as lgb
"""使用lightgbm 5折交叉验证进行建模预测"""
cv_scores = []
for i, (train_index, valid_index) in enumerate(kf.split(X_train, y_train)):
print('************************************ {} ************************************'.format(str(i+1)))
X_train_split, y_train_split, X_val, y_val = X_train.iloc[train_index], y_train[train_index], X_train.iloc[valid_index], y_train[valid_index]
train_matrix = lgb.Dataset(X_train_split, label=y_train_split)
valid_matrix = lgb.Dataset(X_val, label=y_val)
params = {
'boosting_type': 'gbdt',
'objective': 'multiclass',
'num_class': 4,
'learning_rate': 0.01,
'num_leaves': 138,
'max_depth': 11,
'min_data_in_leaf': 43,
'min_child_weight':6.5,
'bagging_fraction': 0.64,
'feature_fraction': 0.93,
'bagging_freq': 49,
'reg_lambda': 7,
'reg_alpha': 0.21,
'min_split_gain': 0.288,
'nthread': 10,
'verbose': -1,
}
model = lgb.train(params, train_set=train_matrix, num_boost_round=4833, valid_sets=valid_matrix,
verbose_eval=1000, early_stopping_rounds=200, feval=f1_score_vali)
val_pred = model.predict(X_val, num_iteration=model.best_iteration)
val_pred = np.argmax(val_pred, axis=1)
cv_scores.append(f1_score(y_true=y_val, y_pred=val_pred, average='macro'))
print(cv_scores)
print("lgb_scotrainre_list:{}".format(cv_scores))
print("lgb_score_mean:{}".format(np.mean(cv_scores)))
print("lgb_score_std:{}".format(np.std(cv_scores)))