本地部署DeepSeek-R1(Dify对话框上传文件+本地知识库对话)

前言

由于Dify默认通过简单的配置快速搭建一个基于 LLM 的对话机器人,对话是不支持文件上传的,只能简单文字对话。这样过于弱鸡不可能每次需要分析文档就先去知识库上传文档再回来对话,过于繁琐。
在这里插入图片描述

自定义工作流编排上传文件读取文档内容

创建一个新的应用,选择Chatflow
在这里插入图片描述

选择功能,打开文件上传功能,点击设置按钮,自定义文件上传属性设置
在这里插入图片描述

现在聊天助手已经支持对话文件上传了,但是DeepSeek并不知道文档里面有什么信息,这个时候需要添加节点提前识别出文档的内容
在这里插入图片描述

在AI模型节点的前面加上一个列表操作的节点,用来识别对话的时候是否上传了文件
在这里插入图片描述

设置变量为文件,开启过滤条件,属性为文档
在这里插入图片描述

继续在列表操作节点后面添加一个文档提取器,把上传的文档数据识别出来
在这里插入图片描述

输出变量可以选择数组、第一个和最后一个,我这里对话上传文件设置了可以上传多个,这里选择了数组
在这里插入图片描述

接着更新LLM设置,上下文选择我们文档提取器,等于把文档提取器识别的信息丢给DeepSeek
在这里插入图片描述

然后直接输出,修改为我们文档提取器的内容
在这里插入图片描述

运行测试一下,现在已经实现对话上传文档对话了。
在这里插入图片描述

上传文件加知识库对话

现在已经实现了上传文件且能识别出文档的信息对话了,但是没有关联本地知识库。

继续完善编排

在开始后面加个条件分支判断
在这里插入图片描述

选择文件不为空就继续下一个节点到列表操作,否则去知识检索
在这里插入图片描述

设置知识检索,引用你的知识库,下一节点到DeepSeek模型
在这里插入图片描述

设置LLM,上下文优先查询引用的本地知识库,然后下一节点直接回复
在这里插入图片描述

测试效果,对话上传文档问里面的信息,然后文字问些本地知识库信息都能识别到。
在这里插入图片描述

### 部署方案概述 在 CentOS 7 上部署 DeepSeek-R1 模型并集成 Dify 知识库的过程可以分为以下几个部分:准备操作系统环境、安装 DockerDocker Compose、通过 Ollama 下载和运行 DeepSeek 模型、配置 Dify 并连接到模型服务。以下是详细的说明。 --- #### 一、操作系统的准备工作 CentOS 7 是一个较为稳定的 Linux 发行版,但在某些方面可能不如较新的发行版(如 Rocky Linux 或 Ubuntu)。需要注意的是: - **软件包支持**:CentOS 7 的默认仓库中可能存在过旧的软件版本,因此需要手动启用 EPEL (Extra Packages for Enterprise Linux) 来获取更多更新的工具和支持[^1]。 - **依赖项兼容性**:Rocky Linux 9.5 被用于初始部署案例,其内核和基础库更接近现代标准。而 CentOS 7 使用较老的基础架构,可能会遇到一些兼容性问题,特别是在处理最新容器技术时。 ```bash sudo yum install epel-release -y sudo yum update -y ``` --- #### 二、DockerDocker Compose 安装 为了确保一致性,建议使用与引用中的相同版本号来减少潜在冲突风险。对于 CentOS 7: 1. 添加官方 Docker CE 存储库: ```bash sudo yum-config-manager --add-repo https://download.docker.com/linux/centos/docker-ce.repo ``` 2. 安装 Docker Engine: ```bash sudo yum install docker-ce docker-ce-cli containerd.io -y ``` 3. 启动并设置开机自启: ```bash sudo systemctl start docker && sudo systemctl enable docker ``` 4. 关于 `docker-compose` 版本的选择,推荐采用 v2.x 系列以匹配最新的功能需求[^2]: ```bash sudo curl -SL https://github.com/docker/compose/releases/download/v2.33.1/docker-compose-linux-x86_64 -o /usr/local/bin/docker-compose sudo chmod +x /usr/local/bin/docker-compose ``` 验证安装成功与否可以通过命令测试: ```bash docker --version docker-compose --version ``` --- #### 三、Ollama 中加载 DeepSeek 模型 利用 Ollama 提供的服务接口简化大型语言模型管理流程。具体步骤如下所示: 1. 创建一个新的目录作为工作区,并切换至该路径下执行后续指令; 2. 初始化项目结构文件夹树形图示意如下: ``` project/ ├── ollama_config.json └── models/ └── deepseek_r1_7b/ ``` 3. 运行以下脚本来完成镜像拉取任务: ```bash mkdir -p ./models/deepseek_r1_7b cd ./models/deepseek_r1_7b # 替代方法调用硅基流动API实现无缝衔接过程描述见参考资料[^3] ollama pull deepseek-r1:7b ``` 注意这里强调了如果直接尝试访问官网提供的 RESTful 接口存在不稳定因素,则需考虑间接途径解决此难题。 --- #### 四、Dify 环境搭建及其关联设定 最后一步就是把前面所构建好的组件串联起来形成完整的解决方案框架——即引入 Dify 应用来统一管理和调度各个子模块之间的交互逻辑关系。 初始化数据库表单定义语句片段举例展示如下形式书写方式遵循 SQL 标准语法习惯即可满足基本要求条件限制范围之内合理调整参数数值大小适应实际应用场景特点差异情况作出相应修改优化改进措施提升整体性能表现水平达到预期目标效果最佳状态呈现出来供大家参考学习借鉴经验积累共同进步成长发展下去不断探索未知领域开拓创新思路方向引领未来趋势走向更加辉煌灿烂明天迎接挑战克服困难勇往直前无惧风雨一路向前迈进! ```sql CREATE TABLE IF NOT EXISTS knowledge_base ( id INT AUTO_INCREMENT PRIMARY KEY, content TEXT NOT NULL, created_at TIMESTAMP DEFAULT CURRENT_TIMESTAMP ); ``` 随后按照文档指引完成必要的字段映射规则制定以及索引创建等工作环节之后便能够顺利启动应用程序进入正常运转模式当中去了呢😊 --- ###
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

勤奋的树懒

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值