Tensorflow笔记[LSTM]

1.简介

长短期记忆网络(Long-Short Term Memory,LSTM)论文首次发表于1997年。由于独特的设计结构,LSTM适合于处理和预测时间序列中间隔和延迟非常长的重要事件。
LSTM的表现通常比时间递归神经网络及隐马尔科夫模型(HMM)更好,比如用在不分段连续手写识别上。2009年,用LSTM构建的人工神经网络模型赢得过ICDAR手写识别比赛冠军。LSTM还普遍用于自主语音识别,2013年运用TIMIT自然演讲数据库达成17.7%错误率的纪录。作为非线性模型,LSTM可作为 复杂的非线性单元用于构造更大型深度神经网络。
LSTM归属于RNN模型,适用于有先后顺序的序列模型,包括文本预测,情感对话,时间序列预测等等。

2.RNN

2.1RNN原理内容介绍

在这里插入图片描述
RNNs神经网络包括
实质是当前特征输出会参考上一特征的输出,即每个时刻都会有输出,并且当前的输出会用于下一时刻的输出
输入单元(Input units),输入集标记为{x0,x1,…,xt,xt+1,…} {x0,x1,…,xt,xt+1,…},而输出单元(Output units)的输出集则被标记为{y0,y1,…,yt,yt+1.,…}{y0,y1,…,yt,yt+1.,…}。RNNs还包含隐藏单元(Hidden units),我们将其输出集标记为{s0,s1,…,st,st+1,…}{s0,s1,…,st,st+1,…},这些隐藏单元完成了最为主要的工作。你会发现,在图中:有一条单向流动的信息流是从输入单元到达隐藏单元的,与此同时另一条单向流动的信息流从隐藏单元到达输出单元。在某些情况下,RNNs会打破后者的限制,引导信息从输出单元返回隐藏单元,这些被称为“Back Projections”,并且隐藏层的输入还包括上一隐藏层的状态,即隐藏层内的节点可以自连也可以互连。

2.1优缺点

处理序列上效果会比DNN的效果好,中间状态当前的输出参看了之前的输出,会参考上文数据进行学习输出,理论上效果更佳,但是不能处理长序列,由于梯度消失,网络几乎不可训练,在序列过长的情况下,不采用原始的RNN算法。

3.LSTM

LSTM是一种特殊的RNN架构,主要是为了解决原始的RNN在长序列上梯度消失和梯度爆炸的问题,相比于普通RNN,其能在长序列中有更好的表现。

3.1RNN差异

解决了梯度消失的问题,解决方式如下:在原来的基础上,增加一个传送信息Ct,Ct数据是一个相隔多个timesteps传递信息,即当前数据的学习参考了三个输入:

  1. 当前的输入信息
  2. 上一时间点的输出状态
  3. 传送带上的Ct信息,Ct信息来自于很久以前的状态信息,其余的处理方式和RNN的数据流程一致。
    在这里插入图片描述

3.2 LSTM内部结构

单个单元的结构图:
在这里插入图片描述

首先LSTM会根据当前的输入xt以及上一单元的状态输出h(t-1)拼接得到四个状态:
在这里插入图片描述
上述σ是sigmoid函数,两者拼接之后,经过一个sigmoid函数,转换为0-1之间的数值,作为一种门控机制(sigmoid),而z则将结果通过tanh激活函数将转换成-1,1之间的值。

在这里插入图片描述
一:zf是一种门控机制(attention),控制c(t-1)的信息的保留度。
二:zi也是可以理解为一种门控机制,控制x(t)信息,对x(t)信息的重要信进行选择,而z则表示为x(t)的信息内容,
三:z0控制那些信息会被选定为当前阶段的输出。

3.3 LSTM代码

from tensorflow.examples.tutorials.mnist import input_data
import tensorflow as tf
import numpy as np

#在这里做数据加载,还是使用那个MNIST的数据,以one_hot的方式加载数据,记得目录可以改成之前已经下载完成的目录
mnist = input_data.read_data_sets("./minist", one_hot=True)

'''
MNIST的数据是一个28*28的图像,这里RNN测试,把他看成一行行的序列(28维度(28长的sequence)*28行)
'''

# RNN学习时使用的参数
learning_rate = 0.001
training_iters = 100000
batch_size = 128
display_step = 10

# 神经网络的参数
n_input = 28  # 输入层的n
n_steps = 28  # 28长度
n_hidden = 128  # 隐含层的特征数
n_classes = 10  # 输出的数量,因为是分类问题,0~9个数字,这里一共有10个

# 构建tensorflow的输入X的placeholder
x = tf.placeholder("float", [None, n_steps, n_input])
# tensorflow里的LSTM需要两倍于n_hidden的长度的状态,一个state和一个cell
# Tensorflow LSTM cell requires 2x n_hidden length (state & cell)
istate = tf.placeholder("float", [None, 2 * n_hidden])
# 输出Y
y = tf.placeholder("float", [None, n_classes])

# 随机初始化每一层的权值和偏置
weights = {
    'hidden': tf.Variable(tf.random_normal([n_input, n_hidden])),  # Hidden layer weights
    'out': tf.Variable(tf.random_normal([n_hidden, n_classes]))
}
biases = {
    'hidden': tf.Variable(tf.random_normal([n_hidden])),
    'out': tf.Variable(tf.random_normal([n_classes]))
}

'''
构建RNN
'''
def RNN(_X, _istate, _weights, _biases):
    # 规整输入的数据
    _X = tf.transpose(_X, [1, 0, 2])  # permute n_steps and batch_size

    _X = tf.reshape(_X, [-1, n_input])  # (n_steps*batch_size, n_input)
    # 输入层到隐含层,第一次是直接运算
    _X = tf.matmul(_X, _weights['hidden']) + _biases['hidden']
    # 之后使用LSTM
    lstm_cell = tf.contrib.rnn.BasicLSTMCell(n_hidden, forget_bias=1.0)
    # lstmCell = tf.contrib.rnn.BasicLSTMCell(n_hidden)
    # lstmCell = tf.contrib.rnn.DropoutWrapper(cell=lstmCell, output_keep_prob=0.75)

    # 28长度的sequence,所以是需要分解位28次
    _X = tf.split(_X, n_steps, 0)  # n_steps * (batch_size, n_hidden)

    # 开始跑RNN那部分
    outputs, _ = tf.contrib.rnn.static_rnn(lstm_cell, _X, dtype=tf.float32)
    #outputs, states = tf.nn.rnn(lstm_cell, _X, initial_state=_istate)

    # 输出层
    return tf.matmul(outputs[-1], _weights['out']) + _biases['out']


pred = RNN(x, istate, weights, biases)
prediction = tf.nn.softmax(pred)

# 定义损失和优化方法,其中算是为softmax交叉熵,优化方法为Adam
cost = tf.reduce_mean(tf.nn.softmax_cross_entropy_with_logits(logits=pred, labels=y))  # Softmax loss
optimizer = tf.train.AdamOptimizer(learning_rate=learning_rate).minimize(cost)  # Adam Optimizer

# 进行模型的评估,argmax是取出取值最大的那一个的标签作为输出
correct_pred = tf.equal(tf.argmax(pred, 1), tf.argmax(y, 1))
accuracy = tf.reduce_mean(tf.cast(correct_pred, tf.float32))

# 初始化
init = tf.initialize_all_variables()

# 开始运行
with tf.Session() as sess:
    sess.run(init)
    step = 1
    # 持续迭代
    while step * batch_size < training_iters:
        # 随机抽出这一次迭代训练时用的数据
        batch_xs, batch_ys = mnist.train.next_batch(batch_size)
        # 对数据进行处理,使得其符合输入
        batch_xs = batch_xs.reshape((batch_size, n_steps, n_input))
        # 迭代
        sess.run(optimizer, feed_dict={x: batch_xs, y: batch_ys,
                                       istate: np.zeros((batch_size, 2 * n_hidden))})
        # 在特定的迭代回合进行数据的输出
        if step % display_step == 0:
            # Calculate batch accuracy
            acc = sess.run(accuracy, feed_dict={x: batch_xs, y: batch_ys,
                                                istate: np.zeros((batch_size, 2 * n_hidden))})
            # Calculate batch loss
            loss = sess.run(cost, feed_dict={x: batch_xs, y: batch_ys,
                                             istate: np.zeros((batch_size, 2 * n_hidden))})
            print ("Iter " + str(step * batch_size) + ", Minibatch Loss= " + "{:.6f}".format(loss) + \
                  ", Training Accuracy= " + "{:.5f}".format(acc))
        step += 1
    print( "Optimization Finished!")
    # 载入测试集进行测试
    test_len = 256
    test_data = mnist.test.images[:test_len].reshape((-1, n_steps, n_input))
    test_label = mnist.test.labels[:test_len]
    print("Testing Accuracy:", sess.run(accuracy, feed_dict={x: test_data, y: test_label,istate: np.zeros((test_len, 2 * n_hidden))}))

结果:

Iter 72960, Minibatch Loss= 0.189100, Training Accuracy= 0.95312
Iter 74240, Minibatch Loss= 0.150113, Training Accuracy= 0.93750
Iter 75520, Minibatch Loss= 0.270333, Training Accuracy= 0.89062
Iter 76800, Minibatch Loss= 0.211398, Training Accuracy= 0.94531
Iter 78080, Minibatch Loss= 0.061158, Training Accuracy= 0.97656
Iter 79360, Minibatch Loss= 0.150612, Training Accuracy= 0.95312
Iter 80640, Minibatch Loss= 0.209830, Training Accuracy= 0.91406
Iter 81920, Minibatch Loss= 0.142261, Training Accuracy= 0.94531
Iter 83200, Minibatch Loss= 0.071051, Training Accuracy= 0.97656
Iter 84480, Minibatch Loss= 0.107968, Training Accuracy= 0.97656
Iter 85760, Minibatch Loss= 0.086125, Training Accuracy= 0.97656
Iter 87040, Minibatch Loss= 0.148604, Training Accuracy= 0.93750
Iter 88320, Minibatch Loss= 0.092867, Training Accuracy= 0.96875
Iter 89600, Minibatch Loss= 0.181523, Training Accuracy= 0.93750
Iter 90880, Minibatch Loss= 0.133728, Training Accuracy= 0.96875
Iter 92160, Minibatch Loss= 0.147873, Training Accuracy= 0.93750
Iter 93440, Minibatch Loss= 0.191465, Training Accuracy= 0.92969
Iter 94720, Minibatch Loss= 0.046124, Training Accuracy= 0.98438
Iter 96000, Minibatch Loss= 0.163414, Training Accuracy= 0.96875
Iter 97280, Minibatch Loss= 0.086835, Training Accuracy= 0.96094
Iter 98560, Minibatch Loss= 0.161855, Training Accuracy= 0.94531
Iter 99840, Minibatch Loss= 0.153985, Training Accuracy= 0.93750
Optimization Finished!
Testing Accuracy: 0.97265625
  • 1
    点赞
  • 2
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值