全连接神经网络VS卷积神经网络基本概念理解

1.全连接神经网络

全连接神经网络中,对n-1层和n层而言,n-1层的任意一个节点,都和第n层所有节点有连接。即第n层的每个节点在进行计算的时候,激活函数的输入是n-1层所有节点的加权,这个激活函数是非线性的。它的缺点就是权重太多了,计算量很大。
它可作用于大多数场景
在这里插入图片描述

2.卷积神经网络

2.1走五子棋的例子

在这里插入图片描述在这里插入图片描述
在这里插入图片描述

2.2卷积核

卷积核:负责检测对应的一个特征。
卷积核的大小也影响网络的架构,早期习惯使用77,99的大卷积核,近来发现研究大的卷积核可以用多个33的卷积核来代替,同时总体参数也减少了。
**因而目前主流卷积神经网络都倾向于3
3大小的卷积核。**
卷积核的参数是由网络通过学习得到的。

2.3通道

每一个卷积操作的结果一般称为一个通道(channel),也称为一个映射(map)
卷积隐藏层通道的个数反映了网络在这一层的特征检测能力。
通常卷积神经网络越靠近输出层其通道数就越多,但每一个通道的数据规模越来越小。

2.4池化

池化操作不需要任何参数,这大大减少了参数的个数。
池化操作与卷积操作相似,也具有大小f、步长s、扩展p等概念,
池化操作分为两种:最大池化和平均池化。

2.5全连接层

池化和全连接层在卷积神经网络中的作用越来越被淡化,有些卷积神经网络甚至抛弃了全连接层。

文章内容参考

  • 3
    点赞
  • 8
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 0
    评论
### 回答1: 卷积神经网络(Convolutional Neural Network,CNN)是一种广泛应用于计算机视觉领域的深度学习模型。以下是一些卷积神经网络中基本的概念: 1. 卷积层(Convolutional Layer):卷积层是CNN的核心层,它通过卷积运算提取图像的特征。卷积层包括卷积核和偏置项,卷积核通过卷积运算提取图像的局部特征。 2. 池化层(Pooling Layer):池化层用于对卷积层输出的特征图进行下采样,减少参数数量,防止过拟合。 3. 全连接层(Fully Connected Layer):全连接层将卷积层和池化层输出的特征图转换成一维向量,然后通过全连接层进行分类或回归。 4. 激活函数(Activation Function):激活函数用于增加CNN的非线性特性。常用的激活函数包括ReLU、Sigmoid和Tanh等。 5. 权重和偏置项(Weights and Bias):CNN中的每个卷积核和全连接层都有自己的权重和偏置项,这些参数是通过反向传播算法进行训练得到的。 6. 卷积步长(Stride):卷积步长是卷积核在进行卷积运算时在输入特征图上移动的步长。 7. 填充(Padding):填充是在输入特征图的周围添加一些像素,用于保持输入和输出特征图的大小一致,防止信息丢失。常用的填充方式包括“Valid Padding”和“Same Padding”。 8. 卷积核数量(Filters):卷积核数量是指在特征图上进行卷积运算时使用的卷积核的数量,每个卷积核提取一种特征。 在卷积神经网络中,这些基本概念相互配合,构成了一个复杂的深度学习模型,用于解决计算机视觉领域的分类、检测、分割等问题。 ### 回答2: 卷积神经网络(Convolutional Neural Network,简称CNN)是一种深度学习模型,常用于图像识别和计算机视觉任务。在理解CNN基本概念前,我们需要了解以下几个关键概念: 1. 卷积层(Convolutional Layer):卷积层是CNN的核心组成部分,通过应用一系列滤波器(卷积核)对输入数据进行卷积操作,以提取输入数据的特征。每个滤波器实际上是一个小型的矩阵,通过在输入数据上进行平移运算,将每个局部区域与滤波器进行逐元素相乘,再将结果求和得到输出特征图。 2. 池化层(Pooling Layer):池化层通常用于下采样操作,以减少特征图的维度,并保留最重要的特征。常见的池化方式是最大池化(Max Pooling),即在特定的窗口中选取最大值作为池化结果。 3. 激活函数(Activation Function):激活函数非线性地引入非线性特征,以提高CNN的表达能力。常见的激活函数有ReLU(修正线性单元)、Sigmoid和Tanh等。 4. 卷积核(Kernel):卷积核是CNN中的重要参数,由多个权重构成。不同的卷积核可以提取不同的特征,通过改变卷积核的大小和数量,可以改变CNN提取的特征。 5. 步幅(Stride):步幅定义了卷积核在输入数据上的移动距离。较大的步幅可以减少输出特征图的尺寸,但可能会丢失一些信息。 6. 填充(Padding):填充是在输入数据周围添加额外像素,以控制输出特征图的尺寸。常用的填充方式有“Valid”(无填充)和“Same”(保持输入输出尺寸相同)。 通过以上基本概念卷积神经网络能够有效地提取图像特征,并通过全连接层将这些特征映射到不同类别的分类结果。CNN已广泛应用于图像分类、目标检测、人脸识别等领域,取得了很多令人瞩目的成果。 ### 回答3: 卷积神经网络(Convolutional Neural Network,CNN)是一种用于处理具有格状结构的数据的人工神经网络。以下是一些卷积神经网络中常见的基本概念: 1. 卷积层:卷积层是CNN的核心组成部分,通过对输入数据进行卷积操作来提取特征。卷积操作是通过将一个滤波器(也称为卷积核)与输入数据进行逐元素相乘,再求和的方式实现的。 2. 滤波器(卷积核):滤波器是卷积层中的参数,用于检测图像中的特定特征,如边缘、纹理等。滤波器的大小和形状可以根据需求来设计。 3. 激活函数:激活函数在卷积神经网络中用于引入非线性变换,增加网络的表达能力。常见的激活函数有ReLU、Sigmoid和TanH等,它们通过将输入映射到某个特定范围内的数值来实现非线性变换。 4. 池化层:池化层用于减小特征图的空间尺寸,同时保留主要的特征信息。常用的池化方式有最大池化和平均池化,它们分别选取池化窗口内的最大值或平均值作为输出。 5. 全连接层:全连接层是卷积神经网络中的最后一层,它将前面的卷积和池化层的输出连接在一起,并应用于分类或回归问题。全连接层中的每个神经元都与上一层的所有神经元相连。 6. 批归一化层:批归一化层用于加速模型的训练速度和稳定性,通过对每个批次的数据进行标准化来规范化网络的输入。它可以使数据在训练过程中的分布更稳定,加快训练速度并提高模型的泛化能力。 7. 损失函数:损失函数用于衡量模型输出与真实值之间的差异程度,是卷积神经网络中的优化目标。常见的损失函数有均方差损失和交叉熵损失等,用于回归和分类问题。 卷积神经网络是目前在图像识别、目标检测等任务中取得显著结果的一种深度学习模型,上述概念是理解和应用CNN的基础。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Tialyg

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值