文章目录
JOIN的使用
Thread中,join()方法的作用是调用线程等待该线程完成后,才能继续用下运行。
有一道面试题曾经问过我
有T1,T2,T3三个线程,如何保证T2在T1执行后执行,T3在T2执行后执行
package com.disney;
public class MainDemo{
public static void main(String[] args) throws InterruptedException {
Thread t1 = new Thread(new Runnable() {
public void run() {
for (int i = 0; i < 20; i++) {
System.out.println(Thread.currentThread().getName() + "=====>" + i);
}
}
},"t1");
t1.start();
t1.join();
Thread t2 = new Thread(new Runnable() {
public void run() {
for (int i = 0; i < 20; i++) {
System.out.println(Thread.currentThread().getName() + "=====>" + i);
}
}
},"t2");
t2.start();
t2.join();
Thread t3 = new Thread(new Runnable() {
public void run() {
for (int i = 0; i < 20; i++) {
System.out.println(Thread.currentThread().getName() + "=====>" + i);
}
}
},"t3");
t3.start();
}
}
输出结果
t1=====>0
Disconnected from the target VM, address: '127.0.0.1:53794', transport: 'socket'
t1=====>1
t1=====>2
t1=====>3
t1=====>4
t1=====>5
t1=====>6
t1=====>7
t1=====>8
t1=====>9
t1=====>10
t1=====>11
t1=====>12
t1=====>13
t1=====>14
t1=====>15
t1=====>16
t1=====>17
t1=====>18
t1=====>19
t2=====>0
t2=====>1
t2=====>2
t2=====>3
t2=====>4
t2=====>5
t2=====>6
t2=====>7
t2=====>8
t2=====>9
t2=====>10
t2=====>11
t2=====>12
t2=====>13
t2=====>14
t2=====>15
t2=====>16
t2=====>17
t2=====>18
t2=====>19
t3=====>0
t3=====>1
t3=====>2
t3=====>3
t3=====>4
t3=====>5
t3=====>6
t3=====>7
t3=====>8
t3=====>9
t3=====>10
t3=====>11
t3=====>12
t3=====>13
t3=====>14
t3=====>15
t3=====>16
t3=====>17
t3=====>18
t3=====>19
线程的三大特性
什么是原子性
即一个操作或者多个操作 要么全部执行并且执行的过程不会被任何因素打断,要么就都不执行。
一个很经典的例子就是银行账户转账问题:
比如从账户A向账户B转1000元,那么必然包括2个操作:从账户A减去1000元,往账户B加上1000元。这2个操作必须要具备原子性才能保证不出现一些意外的问题。
我们操作数据也是如此,比如i = i+1;其中就包括,读取i的值,计算i,写入i。这行代码在Java中是不具备原子性的,则多线程运行肯定会出问题,所以也需要我们使用同步和lock这些东西来确保这个特性了。
原子性其实就是保证数据一致、线程安全一部分,
什么是可见性
当多个线程访问同一个变量时,一个线程修改了这个变量的值,其他线程能够立即看得到修改的值。
若两个线程在不同的cpu,那么线程1改变了i的值还没刷新到主存,线程2又使用了i,那么这个i值肯定还是之前的,线程1对变量的修改线程没看到这就是可见性问题。
什么是有序性
程序执行的顺序按照代码的先后顺序执行。
一般来说处理器为了提高程序运行效率,可能会对输入代码进行优化,它不保证程序中各个语句的执行先后顺序同代码中的顺序一致,但是它会保证程序最终执行结果和代码顺序执行的结果是一致的。如下:
int a = 10; //语句1
java的内存模型
共享内存模型指的就是Java内存模型(简称JMM),JMM决定一个线程对共享变量的写入时,能对另一个线程可见。从抽象的角度来看,JMM定义了线程和主内存之间的抽象关系:线程之间的共享变量存储在主内存(main memory)中,每个线程都有一个私有的本地内存(local memory),本地内存中存储了该线程以读/写共享变量的副本。本地内存是JMM的一个抽象概念,并不真实存在。它涵盖了缓存,写缓冲区,寄存器以及其他的硬件和编译器优化。、
从上图来看,线程A与线程B之间如要通信的话,必须要经历下面2个步骤:
- 首先,线程A把本地内存A中更新过的共享变量刷新到主内存中去。
- 然后,线程B到主内存中去读取线程A之前已更新过的共享变量。
下面通过示意图来说明这两个步骤:
如上图所示,本地内存A和B有主内存中共享变量x的副本。假设初始时,这三个内存中的x值都为0。线程A在执行时,把更新后的x值(假设值为1)临时存放在自己的本地内存A中。当线程A和线程B需要通信时,线程A首先会把自己本地内存中修改后的x值刷新到主内存中,此时主内存中的x值变为了1。随后,线程B到主内存中去读取线程A更新后的x值,此时线程B的本地内存的x值也变为了1。
从整体来看,这两个步骤实质上是线程A在向线程B发送消息,而且这个通信过程必须要经过主内存。JMM通过控制主内存与每个线程的本地内存之间的交互,来为java程序员提供内存可见性保证。
总结:什么是Java内存模型:java内存模型简称jmm,定义了一个线程对另一个线程可见。共享变量存放在主内存中,每个线程都有自己的本地内存,当多个线程同时访问一个数据的时候,可能本地内存没有及时刷新到主内存,所以就会发生线程安全问题。
voliate关键字
Volatile 关键字的作用是变量在多个线程之间可见。她保证了线程的可见性
class ThreadVolatileDemo extends Thread {
public boolean flag = true;
@Override
public void run() {
System.out.println("开始执行子线程....");
while (flag) {
}
System.out.println("线程停止");
}
public void setRuning(boolean flag) {
this.flag = flag;
}
}
public class ThreadVolatile {
public static void main(String[] args) throws InterruptedException {
ThreadVolatileDemo threadVolatileDemo = new ThreadVolatileDemo();
threadVolatileDemo.start();
Thread.sleep(3000);
threadVolatileDemo.setRuning(false);
System.out.println("flag 已经设置成false");
Thread.sleep(1000);
System.out.println(threadVolatileDemo.flag);
}
}
输出结果
开始执行子线程....
flag 已经设置成false
false
根据代码可以看出来,我们在进行代码书写的时候,最后已经把flag=false,而且输出也是false
然而程序并没有输出“线程停止”,
原因:线程之间是不可见的,读取的是副本,没有及时读取到主内存结果。
解决办法使用Volatile关键字将解决线程之间可见性, 强制线程每次读取该值的时候都去“主内存”中取值
代码优化
public volatile boolean flag = true;
输出结果
开始执行子线程....
flag 已经设置成false
线程停止
Disconnected from the target VM, address: '127.0.0.1:54042', transport: 'socket'
false
volatile 的原子性
volatile 本身只能 保证可见性,不能保证原子性,代码如下
package com.disney;
public class VolatileNoAtomic extends Thread {
private static volatile int count;
// private static AtomicInteger count = new AtomicInteger(0);
private static void addCount() {
for (int i = 0; i < 1000; i++) {
count++;
// count.incrementAndGet();
}
System.out.println(Thread.currentThread().getName()+"====>"+count);
}
public void run() {
addCount();
}
public static void main(String[] args) {
VolatileNoAtomic[] arr = new VolatileNoAtomic[10];
for (int i = 0; i < 10; i++) {
arr[i] = new VolatileNoAtomic();
}
for (int i = 0; i < 10; i++) {
arr[i].start();
}
}
}
输出结果
Thread-2====>2000
Thread-1====>2000
Thread-0====>3356
Thread-4====>4000
Thread-3====>5084
Thread-9====>6084
Thread-7====>5084
Thread-5====>7084
Thread-6====>8084
Thread-8====>9084
可以看出来我们本来的预期是按1000成倍的增加的,但是却发现3356。5084等一些列乱的数据
解决方案
使用AtomicInteger解决
package com.disney;
import java.util.concurrent.atomic.AtomicInteger;
public class VolatileNoAtomic extends Thread {
private static AtomicInteger atomicInteger = new AtomicInteger(0);
// private static AtomicInteger count = new AtomicInteger(0);
private static void addCount() {
for (int i = 0; i < 1000; i++) {
atomicInteger.incrementAndGet();
// count.incrementAndGet();
}
System.out.println(Thread.currentThread().getName()+"====>"+atomicInteger.toString());
}
public void run() {
addCount();
}
public static void main(String[] args) {
VolatileNoAtomic[] arr = new VolatileNoAtomic[10];
for (int i = 0; i < 10; i++) {
arr[i] = new VolatileNoAtomic();
}
for (int i = 0; i < 10; i++) {
arr[i].start();
}
}
}
输出结果
Thread-2====>2000
Thread-1====>2000
Thread-0====>3000
Thread-3====>4000
Thread-6====>5000
Thread-4====>6000
Thread-9====>7000
Thread-7====>8000
Thread-8====>9000
Thread-5====>10000
volatile与synchronized区别
仅靠volatile不能保证线程的安全性。(原子性)
①volatile轻量级,只能修饰变量。synchronized重量级,还可修饰方法
②volatile只能保证数据的可见性,不能用来同步,因为多个线程并发访问volatile修饰的变量不会阻塞。
synchronized不仅保证可见性,而且还保证原子性,因为,只有获得了锁的线程才能进入临界区,从而保证临界区中的所有语句都全部执行。多个线程争抢synchronized锁对象时,会出现阻塞。
线程安全性
线程安全性包括两个方面,①可见性。②原子性。
从上面自增的例子中可以看出:仅仅使用volatile并不能保证线程安全性。而synchronized则可实现线程的安全性。
ThreadLocal
ThreadLocal提高一个线程的局部变量,访问某个线程拥有自己局部变量。
当使用ThreadLocal维护变量时,ThreadLocal为每个使用该变量的线程提供独立的变量副本,所以每一个线程都可以独立地改变自己的副本,而不会影响其它线程所对应的副本。
ThreadLocal的接口方法
ThreadLocal类接口很简单,只有4个方法,我们先来了解一下:
• void set(Object value)设置当前线程的线程局部变量的值。
• public Object get()该方法返回当前线程所对应的线程局部变量。
• public void remove()将当前线程局部变量的值删除,目的是为了减少内存的占用,该方法是JDK 5.0新增的方法。需要指出的是,当线程结束后,对应该线程的局部变量将自动被垃圾回收,所以显式调用该方法清除线程的局部变量并不是必须的操作,但它可以加快内存回收的速度。
• protected Object initialValue()返回该线程局部变量的初始值,该方法是一个protected的方法,显然是为了让子类覆盖而设计的。这个方法是一个延迟调用方法,在线程第1次调用get()或set(Object)时才执行,并且仅执行1次。ThreadLocal中的缺省实现直接返回一个null。
案例示范
创建三个线程,每个线程生成自己独立序列号
package com.disney;
class Res {
// 生成序列号共享变量
public static Integer count = 0;
public static ThreadLocal<Integer> threadLocal = new ThreadLocal<Integer>() {
protected Integer initialValue() {
return 0;
};
};
public Integer getNum() {
int count = threadLocal.get() + 1;
threadLocal.set(count);
return count;
}
}
public class ThreadLocaDemo2 extends Thread {
private Res res;
public ThreadLocaDemo2(Res res) {
this.res = res;
}
@Override
public void run() {
for (int i = 0; i < 3; i++) {
System.out.println(Thread.currentThread().getName() + "======>" + res.getNum());
}
}
public static void main(String[] args) {
Res res = new Res();
ThreadLocaDemo2 threadLocaDemo1 = new ThreadLocaDemo2(res);
ThreadLocaDemo2 threadLocaDemo2 = new ThreadLocaDemo2(res);
ThreadLocaDemo2 threadLocaDemo3 = new ThreadLocaDemo2(res);
threadLocaDemo1.start();
threadLocaDemo2.start();
threadLocaDemo3.start();
}
}
输出结果
Thread-0======>1
Thread-0======>2
Thread-0======>3
Thread-1======>1
Thread-1======>2
Thread-1======>3
Thread-2======>1
Thread-2======>2
Thread-2======>3
线程池
什么是线程池
线程池是指在初始化一个多线程应用程序过程中创建一个线程集合,然后在需要执行新的任务时重用这些线程而不是新建一个线程。线程池中线程的数量通常完全取决于可用内存数量和应用程序的需求。然而,增加可用线程数量是可能的。线程池中的每个线程都有被分配一个任务,一旦任务已经完成了,线程回到池子中并等待下一次分配任务。
线程池的作用
基于以下几个原因在多线程应用程序中使用线程是必须的:
- 线程池改进了一个应用程序的响应时间。由于线程池中的线程已经准备好且等待被分配任务,应用程序可以直接拿来使用而不用新建一个线程。
- 线程池节省了CLR 为每个短生存周期任务创建一个完整的线程的开销并可以在任务完成后回收资源。
- 线程池根据当前在系统中运行的进程来优化线程时间片。
- 线程池允许我们开启多个任务而不用为每个线程设置属性。
- 线程池允许我们为正在执行的任务的程序参数传递一个包含状态信息的对象引用。
- 线程池可以用来解决处理一个特定请求最大线程数量限制问题。
创建线程池的四种方式
Java通过Executors(jdk1.5并发包)提供四种线程池,分别为:
newCachedThreadPool创建一个可缓存线程池,如果线程池长度超过处理需要,可灵活回收空闲线程,若无可回收,则新建线程。
newFixedThreadPool 创建一个定长线程池,可控制线程最大并发数,超出的线程会在队列中等待。
newScheduledThreadPool 创建一个定长线程池,支持定时及周期性任务执行。
newSingleThreadExecutor 创建一个单线程化的线程池,它只会用唯一的工作线程来执行任务,保证所有任务按照指定顺序(FIFO, LIFO, 优先级)执行。
newCachedThreadPool
创建一个可缓存线程池,如果线程池长度超过处理需要,可灵活回收空闲线程,若无可回收,则新建线程。示例代码如下:
public class ThreadLocaDemo2 extends Thread {
public static void main(String[] args) {
ExecutorService executorService = Executors.newCachedThreadPool();
//执行exectue 表示创建了一个线程 类似start
for (int i = 0; i <10 ; i++) {
final int I = i;
executorService.execute(new Runnable() {
public void run() {
System.out.println(Thread.currentThread().getName()+"====>"+ I);
}
});
}
executorService.shutdown();
}
}
输出结果
pool-1-thread-1====>0
pool-1-thread-4====>3
pool-1-thread-3====>2
pool-1-thread-2====>1
pool-1-thread-6====>5
pool-1-thread-8====>7
pool-1-thread-9====>8
pool-1-thread-7====>6
pool-1-thread-5====>4
pool-1-thread-10====>9
总结: 线程池为无限大,当执行第二个任务时第一个任务已经完成,会复用执行第一个任务的线程,而不用每次新建线程。
newFixedThreadPool
创建一个定长线程池,可控制线程最大并发数,超出的线程会在队列中等待。示例代码如下:
// 创建一个定长线程池,可控制线程最大并发数,超出的线程会在队列中等待
final ExecutorService newCachedThreadPool = Executors.newFixedThreadPool(3);
for (int i = 0; i < 10; i++) {
final int index = i;
newCachedThreadPool.execute(new Runnable() {
public void run() {
try {
Thread.sleep(1000);
} catch (Exception e) {
// TODO: handle exception
}
System.out.println("i:" + index);
}
});
}
总结:因为线程池大小为3,每个任务输出index后sleep 2秒,所以每两秒打印3个数字。
定长线程池的大小最好根据系统资源进行设置。如Runtime.getRuntime().availableProcessors()
newScheduledThreadPool
创建一个定长线程池,支持定时及周期性任务执行。延迟执行示例代码如下:
// 创建一个定长线程池,支持定时及周期性任务执行。延迟执行示例代码如下:
ScheduledExecutorService newScheduledThreadPool = Executors.newScheduledThreadPool(5);
newScheduledThreadPool.schedule(new Runnable() {
public void run() {
System.out.println("delay 3 seconds");
}
}, 3, TimeUnit.SECONDS);
表示延迟3秒执行。
newSingleThreadExecutor
创建一个单线程化的线程池,它只会用唯一的工作线程来执行任务,保证所有任务按照指定顺序(FIFO, LIFO, 优先级)执行。示例代码如下:
ExecutorService newSingleThreadExecutor = Executors.newSingleThreadExecutor();
for (int i = 0; i < 10; i++) {
final int index = i;
newSingleThreadExecutor.execute(new Runnable() {
@Override
public void run() {
System.out.println("index:" + index);
try {
Thread.sleep(200);
} catch (Exception e) {
// TODO: handle exception
}
}
});
}
注意: 结果依次输出,相当于顺序执行各个任务。
在实际项目项目一半不会这么使用,因为他没有设置容量的大小,很可能会导致内存溢出,一半企业的项目代码如下
// thread:
// poolsize: 10
// keepaliveSecond: 60
@Bean(name = "threadPollForActionReport")
ExecutorService getThreadPoolForTicketRetrieve(@Value("${fr.thread.poolsize}") Integer corePoolSize, @Value("${fr.thread.keepaliveSecond}") Integer keepAliveSecond) {
ThreadFactory factory = (r) -> {
Thread t = new Thread(r);
t.setName("threadForActionReport-" + t.getId());
return t;
};
ThreadPoolExecutor executor = new ThreadPoolExecutor(corePoolSize, 1000, keepAliveSecond, TimeUnit.SECONDS, new LinkedBlockingDeque<>(), factory);
executor.allowCoreThreadTimeOut(true);
return executor;
}
具体的调用
// Future<?> submit(Runnable task);
threadPollForActionReport.submit(() -> {
System.out.println("index");
});
线程池的构造函数参数多达7个,现在我们一一来分析它们对线程池的影响。
corePoolSize:线程池中核心线程数的最大值
maximumPoolSize:线程池中能拥有最多线程数
workQueue:用于缓存任务的阻塞队列
我们现在通过向线程池添加新的任务来说明着三者之间的关系。
1)如果没有空闲的线程执行该任务且当前运行的线程数少于corePoolSize,则添加新的线程执行该任务。
2)如果没有空闲的线程执行该任务且当前的线程数等于corePoolSize同时阻塞队列未满,则将任务入队列,而不添加新的线程。
3)如果没有空闲的线程执行该任务且阻塞队列已满同时池中的线程数小于maximumPoolSize,则创建新的线程执行任务。
4)如果没有空闲的线程执行该任务且阻塞队列已满同时池中的线程数等于maximumPoolSize,则根据构造函数中的handler指定的策略来拒绝新的任务。
注意,线程池并没有标记哪个线程是核心线程,哪个是非核心线程,线程池只关心核心线程的数量。
通俗解释,如果把线程池比作一个单位的话,corePoolSize就表示正式工,线程就可以表示一个员工。当我们向单位委派一项工作时,如果单位发现正式工还没招满,单位就会招个正式工来完成这项工作。随着我们向这个单位委派的工作增多,即使正式工全部满了,工作还是干不完,那么单位只能按照我们新委派的工作按先后顺序将它们找个地方搁置起来,这个地方就是workQueue,等正式工完成了手上的工作,就到这里来取新的任务。如果不巧,年末了,各个部门都向这个单位委派任务,导致workQueue已经没有空位置放新的任务,于是单位决定招点临时工吧(临时工:又是我!)。临时工也不是想招多少就找多少,上级部门通过这个单位的maximumPoolSize确定了你这个单位的人数的最大值,换句话说最多招maximumPoolSize–corePoolSize个临时工。当然,在线程池中,谁是正式工,谁是临时工是没有区别,完全同工同酬。
keepAliveTime:表示空闲线程的存活时间。
TimeUnitunit:表示keepAliveTime的单位。
为了解释keepAliveTime的作用,我们在上述情况下做一种假设。假设线程池这个单位已经招了些临时工,但新任务没有继续增加,所以随着每个员工忙完手头的工作,都来workQueue领取新的任务(看看这个单位的员工多自觉啊)。随着各个员工齐心协力,任务越来越少,员工数没变,那么就必定有闲着没事干的员工。这样的话领导不乐意啦,但是又不能轻易fire没事干的员工,因为随时可能有新任务来,于是领导想了个办法,设定了keepAliveTime,当空闲的员工在keepAliveTime这段时间还没有找到事情干,就被辞退啦,毕竟地主家也没有余粮啊!当然辞退到corePoolSize个员工时就不再辞退了,领导也不想当光杆司令啊!
handler:表示当workQueue已满,且池中的线程数达到maximumPoolSize时,线程池拒绝添加新任务时采取的策略。
为了解释handler的作用,我们在上述情况下做另一种假设。假设线程池这个单位招满临时工,但新任务依然继续增加,线程池从上到下,从里到外真心忙的不可开交,阻塞队列也满了,只好拒绝上级委派下来的任务。怎么拒绝是门艺术,handler一般可以采取以下四种取值。
ThreadPoolExecutor.AbortPolicy()
抛出RejectedExecutionException异常
ThreadPoolExecutor.CallerRunsPolicy()
由向线程池提交任务的线程来执行该任务
ThreadPoolExecutor.DiscardOldestPolicy()
抛弃最旧的任务(最先提交而没有得到执行的任务)
ThreadPoolExecutor.DiscardPolicy()
抛弃当前的任务
workQueue:它决定了缓存任务的排队策略。对于不同的应用场景我们可能会采取不同的排队策略,这就需要不同类型的阻塞队列,在线程池中常用的阻塞队列有以下2种:
(1)SynchronousQueue<Runnable>:此队列中不缓存任何一个任务。向线程池提交任务时,如果没有空闲线程来运行任务,则入列操作会阻塞。当有线程来获取任务时,出列操作会唤醒执行入列操作的线程。从这个特性来看,SynchronousQueue是一个无界队列,因此当使用SynchronousQueue作为线程池的阻塞队列时,参数maximumPoolSizes没有任何作用。
(2)LinkedBlockingQueue<Runnable>:顾名思义是用链表实现的队列,可以是有界的,也可以是无界的,但在Executors中默认使用无界的。
threadFactory:指定创建线程的工厂
线程池的原理分析
提交一个任务到线程池中,线程池的处理流程如下:
1、判断线程池里的核心线程是否都在执行任务,如果不是(核心线程空闲或者还有核心线程没有被创建)则创建一个新的工作线程来执行任务。
如果核心线程都在执行任务,则进入下个流程。
2、线程池判断工作队列是否已满,如果工作队列没有满,则将新提交的任务存储在这个工作队列里。如果工作队列满了,则进入下个流程。
3、判断线程池里的线程是否都处于工作状态,如果没有,则创建一个新的工作线程来执行任务。如果已经满了,则交给饱和策略来处理这个任务。
合理的配置线程池的参数
核心线程为电脑的CPU的数量,最大线程池数量为CPU数量*2
java锁
悲观锁与乐观锁
悲观锁:悲观锁悲观的认为每一次操作都会造成更新丢失问题,在每次查询时加上排他锁。
每次去拿数据的时候都认为别人会修改,所以每次在拿数据的时候都会上锁,这样别人想拿这个数据就会block直到它拿到锁。传统的关系型数据库里边就用到了很多这种锁机制,比如行锁,表锁等,读锁,写锁等,都是在做操作之前先上锁。
Select * from xxx for update;
乐观锁:乐观锁会乐观的认为每次查询都不会造成更新丢失,利用版本字段控制
悲观锁的实现
例子:下单进行减少库存的操作
在进行操作的时候,此时我们添加for update语句,此时当线程来的时候,我们会给他添加一个锁,不过这样的话,只能一个线程一个线程的来, 效率的比较底下
乐观锁的实现
乐观锁的实现,我们会在数据库中添加一个字段,不过在进行修改的时候,此时在修改的数据也会先判断version的版本号,此时他并没有天机的利用,他利用的是一个versiond的校验
重入锁
重入锁:也叫做递归锁,指的是同一线程 外层函数获得锁之后 ,内层递归函数仍然有获取该锁的代码,但不受影响。
在JAVA环境下 ReentrantLock 和synchronized 都是 可重入锁。因为在前台的的交流中,我们知道如果同步嵌套同步的话,此时
会产生一个死锁的问题
java代码演示
package com.disney;
public class Test implements Runnable {
public void get() {
try {
Thread.sleep(100);
System.out.println("name:" + Thread.currentThread().getName() + " get();");
set();
} catch (InterruptedException e) {
e.printStackTrace();
}
}
public void set() {
try {
Thread.sleep(100);
System.out.println("name:" + Thread.currentThread().getName() + " set()");
} catch (InterruptedException e) {
e.printStackTrace();
}
}
@Override
public void run() {
get();
}
public static void main(String[] args) {
Test ss = new Test();
new Thread(ss).start();
new Thread(ss).start();
new Thread(ss).start();
new Thread(ss).start();
}
}
输出结果
name:Thread-3 get();
name:Thread-1 get();
name:Thread-0 get();
name:Thread-2 get();
name:Thread-3 set()
name:Thread-1 set()
name:Thread-0 set()
name:Thread-2 set()
从上面你的代码我们知道,线程总是先运行完get 之后才要set,这样的效果并不是我们预期想要的,我们想要的结果是每个单独的线程的方法,先执行get方法然后执行set方法
读写锁
相比Java中的锁(Locks in Java)里Lock实现,读写锁更复杂一些。假设你的程序中涉及到对一些共享资源的读和写操作,且写操作没有读操作那么频繁。在没有写操作的时候,两个线程同时读一个资源没有任何问题,所以应该允许多个线程能在同时读取共享资源。但是如果有一个线程想去写这些共享资源,就不应该再有其它线程对该资源进行读或写(译者注:也就是说:读-读能共存,读-写不能共存,写-写不能共存)。这就需要一个读/写锁来解决这个问题。Java5在java.util.concurrent包中已经包含了读写锁。尽管如此,我们还是应该了解其实现背后的原理。
public class Cache {
static Map<String, Object> map = new HashMap<String, Object>();
static ReentrantReadWriteLock rwl = new ReentrantReadWriteLock();
static Lock r = rwl.readLock();
static Lock w = rwl.writeLock();
// 获取一个key对应的value
public static final Object get(String key) {
r.lock();
try {
System.out.println("正在做读的操作,key:" + key + " 开始");
Thread.sleep(100);
Object object = map.get(key);
System.out.println("正在做读的操作,key:" + key + " 结束");
System.out.println();
return object;
} catch (InterruptedException e) {
} finally {
r.unlock();
}
return key;
}
// 设置key对应的value,并返回旧有的value
public static final Object put(String key, Object value) {
w.lock();
try {
System.out.println("正在做写的操作,key:" + key + ",value:" + value + "开始.");
Thread.sleep(100);
Object object = map.put(key, value);
System.out.println("正在做写的操作,key:" + key + ",value:" + value + "结束.");
System.out.println();
return object;
} catch (InterruptedException e) {
} finally {
w.unlock();
}
return value;
}
// 清空所有的内容
public static final void clear() {
w.lock();
try {
map.clear();
} finally {
w.unlock();
}
}
public static void main(String[] args) {
new Thread(new Runnable() {
@Override
public void run() {
for (int i = 0; i < 10; i++) {
Cache.put(i + "", i + "");
}
}
}).start();
new Thread(new Runnable() {
@Override
public void run() {
for (int i = 0; i < 10; i++) {
Cache.get(i + "");
}
}
}).start();
}
}
无锁
无锁其实类似乐观锁
(1)与锁相比,使用比较交换(下文简称CAS)会使程序看起来更加复杂一些。但由于其非阻塞性,它对死锁问题天生免疫,并且,线程间的相互影响也远远比基于锁的方式要小。更为重要的是,使用无锁的方式完全没有锁竞争带来的系统开销,也没有线程间频繁调度带来的开销,因此,它要比基于锁的方式拥有更优越的性能。
(2)无锁的好处:
第一,在高并发的情况下,它比有锁的程序拥有更好的性能;
第二,它天生就是死锁免疫的。
就凭借这两个优势,就值得我们冒险尝试使用无锁的并发。
(3)CAS算法的过程是这样:它包含三个参数CAS(V,E,N): V表示要更新的变量,E表示预期值,N表示新值。仅当V值等于E值时,才会将V的值设为N,如果V值和E值不同,则说明已经有其他线程做了更新,则当前线程什么都不做。最后,CAS返回当前V的真实值。
(4)CAS操作是抱着乐观的态度进行的,它总是认为自己可以成功完成操作。当多个线程同时使用CAS操作一个变量时,只有一个会胜出,并成功更新,其余均会失败。失败的线程不会被挂起,仅是被告知失败,并且允许再次尝试,当然也允许失败的线程放弃操作。基于这样的原理,CAS操作即使没有锁,也可以发现其他线程对当前线程的干扰,并进行恰当的处理。
(5)简单地说,CAS需要你额外给出一个期望值,也就是你认为这个变量现在应该是什么样子的。如果变量不是你想象的那样,那说明它已经被别人修改过了。你就重新读取,再次尝试修改就好了。
(6)在硬件层面,大部分的现代处理器都已经支持原子化的CAS指令。在JDK 5.0以后,虚拟机便可以使用这个指令来实现并发操作和并发数据结构,并且,这种操作在虚拟机中可以说是无处不在。
自旋锁
是采用让当前线程不停地的在循环体内执行实现的,当循环的条件被其他线程改变时 才能进入临界区。
无锁其实也就是CAS的锁的实践
如下java代码
public class Test implements Runnable {
static int sum;
private SpinLock lock;
public Test(SpinLock lock) {
this.lock = lock;
}
/**
* @param args
* @throws InterruptedException
*/
public static void main(String[] args) throws InterruptedException {
SpinLock lock = new SpinLock();
for (int i = 0; i < 100; i++) {
Test test = new Test(lock);
Thread t = new Thread(test);
t.start();
}
Thread.currentThread().sleep(1000);
System.out.println(sum);
}
@Override
public void run() {
this.lock.lock();
this.lock.lock();
sum++;
this.lock.unlock();
this.lock.unlock();
}
}