Stable Diffusion 系列教程 - 3 模型下载和LORA模型的小白入门

首先,一个比较广泛的模型下载地址为:Civitai Models | Discover Free Stable Diffusion Models

黄框是一些过滤器,比如checkpoints可以理解为比如把1.5版本的SD模型拷贝一份后交叉识别新的画风或场景后得到的模型,可以单独拿出来使用。 Hypernetwork和lora在特定场景下都非常好用。我们以majicMIX realistic 麦橘写实模型为例子,点开:

点开一张照片,我们能看到生成这张照片的提示词和负提示词以及cfg scale,甚至往下拉还有推荐的优质参数和评论区。下载好模型后,将其放到stablediffusion-webui ---> models ---> Stable-diffusion 目录下。随后在webUI中点击大模型的下拉框,即可切换(需要等待一定时间)。

实际使用中,我们发现生成的和网页给我们的感觉差距是非常大的,其中有很重要的一点是没有阅读模型的说明书。 其在模型页面下方,


LoRA训练

环境:秋叶大佬的安装包 LoRA WebUI 提取码:p8uy。

数据集:图片和标签。如何做:

  • 打开Web UI。点击训练,再点击图像预处理:复制存放图像的文件夹到源目录,复制标签和预处理后的图像需要存放的文件夹到目标目录。宽度高度根据自己的需要去设置,这代表着预处理后的图像大小。

  • 勾选使用deepbooru生成说明文字tag。点击预处理,自动处理完成后即可得到标签文件。

  • 对标签进行修改。由于标签是deepbooru图生文模型生成的,不一定那么准确。因此需要去对生成的标签做处理。这里先不讲如何打Tag,直接进行下一步。
  • 进入秋叶大佬的炼丹器,点击LORA训练-新手(本节只过新手场)。添加底模路径(再SD的模型文件夹中添加一个大模型即可。)

  • 添加训练数据集路径: 最好将你的数据集放到lora-scripts-v1.7.3\train\下。在这个目录中创建一个文件夹为你数据集名称,随后再创建一个文件夹为 数字_数据集名称。如上图所示。20代表每一个epoch中单张图片的训练次数,比如epoch=10,则一张图像的实际训练次数是10×20=200次。在train_data_dir中只填前一级目录
  • 其他参数尽量先不调,直接开始训练。

  • 复制lora模型:将Output文件夹中的lora模型文件拷贝到SD WebUI的models/Lora文件夹中。没有数字的代表最终结果,有数字的代表不同阶段的结果。

  •  加载lora模型:在文生图这一页点击“启用”LoRA。随后选择刚才复制过来的LoRA模型。就可以生成啦。(权重建议调到0.8)


注:,我们直接对txt中的tag处理是非常不方便的,因此就需要:题词管理工具(毛子开发) 。链接我放到下方:链接:https://pan.baidu.com/s/1dAhvm-DBI9o62aWd1T1Csw  提取码:zub1 

打开exe, 左上角File打开训练集目录,就可以看到当前图片和当前图片的标签。最右侧为所有图片的Tag。我们可以通过中间栏调整单个图片的Tag,也可以通过右边这一栏添加或删除所有图片中相同的Tag。双击图像可以查看细节。,修改完全部后再次点击左上角的Save。

此外,还能有翻译功能,在左上角File的setting中:

点击下方,即可进行自动翻译:

 

 

 

### Stable-Diffusion WebUI 使用 LoRA 模型训练部署 #### 安装与配置环境 为了使 Stable-Diffusion WebUI 支持 LoRA (Low-Rank Adaptation),需先确保已正确安装并配置好基础环境。这通常意味着已经成功设置了 `stable-diffusion-webui` 并能够正常运行[^1]。 #### 获取 LoRA 插件支持文件 对于希望利用 LoRA 技术来增强图像生成效果的用户来说,获取相应的支持文件至关重要。这些资源可以从 Hugging Face 或其他可信平台获得。具体而言: - 访问指定页面下载所需的 `.pth` 文件,并将其放置于适当位置,如 `~/stable-diffusion-webui/models/Lora/` 目录下[^2]。 #### 配置 WebUI 以启用 LoRA 功能 为了让 WebUI 正确识别并应用 LoRA 模型,在启动时应加入特定命令行参数。例如,可以通过添加 `--lora-dir ./models/Lora` 参数指向存储有 LoRA 权重的位置[^3]。 ```bash python webui.py --lora-dir ./models/Lora ``` 此外,还需确认界面设置中启用了相关选项以便加载所选模型作为默认项之一。 #### 测试与调试 完成上述步骤之后,建议通过浏览器开发者工具(按 F12 打开)监控 API 请求过程中的数据交换情况,从而验证整个流程是否顺畅工作。此时应注意检查控制台输出的信息,特别是当遇到问题时可以据此排查错误原因。 #### 实际操作指南 实际使用过程中,用户可以根据需求调整正负向提示词以及其他高级设定,充分利用 LoRA 提供的功能特性。值得注意的是,虽然这里主要讨论了如何集成现有 LoRA 模型,但对于有兴趣进一步探索该领域的人来说,了解其背后的原理以及尝试自行训练定制化版本也是非常有益的经历。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

刚哥吧

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值