一维卷积噪声干扰

%%%%%%%%噪声卷积干扰%%%%%%%%%%%%%%%%%
clear all;close all;clc;

%%%%%%%初始化数据%%%%%%%%%
T=20e-6;
B=10e6;
f0=0;
Fs=5*B;
K=B/T;
Ts=1/Fs;
N=T*Fs;
%%%%%%%%%%%%%%%%%%%%%%%%%%

%%%%%%%%%LFM信号%%%%%%%%%%%%%%%
t=linspace(0,T,N);
St=exp(j*pi*K*(t-T/2).^2);
figure,
subplot(121),plot(t*1e6,real(St));
xlabel('时间/us');
ylabel('幅度');
title('LFM时域信号');
grid on;

f=linspace(-Fs/2,Fs/2,N);
subplot(122),
plot(f*1e-6,fftshift(abs(fft(St))));
xlabel('频率/MHz');
ylabel('幅度');
grid on;
title('LFM信号频谱图');
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%%%%%%%%%%%%脉冲压缩%%%%%%%%%%%%%
St1=exp(j*pi*K*(t-10).^2);
y1=abs(xcorr(St,St));
M=length(y1);
axisX=(1:M)*Ts*1e6;
figure,
plot(axisX,abs(y1)/max(y1));
xlabel('时间/us');
ylabel('归一化幅度');
title('LFM脉冲压缩信号');
axis([10 30 0 1]);
grid on;
hold on;
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%%%%%%%%%%噪声卷积干扰%%%%%%%%%%%
Ls=2e-6;
M=fix(Ls*Fs);
Gnoise=wgn(1,M,0);      %均值为0的高斯视频噪声
J=conv(Gnoise,St);
so=J(1:length(St));
y3=abs(xcorr(so,St));
M=length(y3);
axisX=(1:M)*Ts*1e6;
figure,
subplot(121),
plot(axisX,real(y3)/max(y3));
xlabel('时间/us');
ylabel('归一化幅度');
title('(a)噪声时宽为2us');
axis([10 30 0 1]); 
%grid on;

%%%%%%%%%%%%%%%%%%%
Ls=4e-6;
M=fix(Ls*Fs);
Gnoise=wgn(1,M,0);      %均值为0的高斯视频噪声
J=conv(Gnoise,St);
so=J(1:length(St));
y3=abs(xcorr(so,St));
M=length(y3);
axisX=(1:M)*Ts*1e6;
subplot(122),
plot(axisX,real(y3)/max(y3));
xlabel('时间/us');
ylabel('归一化幅度');
title('(b)噪声时宽为4us');
axis([10 30 0 1]); 
%grid on;
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%%%%%%%%%移频卷积噪声干扰%%%%%%%%
f1=1e6;       %移频量
f2=1.5e6;
St_j=exp(j*pi*K*(t-T/2).^2+j*2*pi*(0+f1)*(t-T/2));
St_j_1=exp(j*pi*K*(t-T/2).^2+j*2*pi*(0+f2)*(t-T/2));

J=conv(Gnoise,St_j);
so1=J(1:length(St))+St_j;
y3=abs(xcorr(so1,St));
M1=length(y3);
axisX=(1:M1)*Ts*1e6;
figure,
subplot(121),
plot(axisX,real(y3)/max(y3));
xlabel('时间/us');
ylabel('归一化幅度');
title('(a)移频量1MHz');
axis([10 30 0 1]); 

J=conv(Gnoise,St_j_1);
so1=J(1:length(St))+St_j_1;
y3=abs(xcorr(so1,St));
M1=length(y3);
axisX=(1:M1)*Ts*1e6;
subplot(122),
plot(axisX,real(y3)/max(y3));
xlabel('时间/us');
ylabel('归一化幅度');
title('(b)移频量1.5MHz');
axis([10 30 0 1]); 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

  • 0
    点赞
  • 18
    收藏
    觉得还不错? 一键收藏
  • 1
    评论
一维CNN(卷积神经网络)在光谱反射率分析中是一种常用的方法。它可以用于提取光谱数据中的特征,并进行分类、回归等任务。下面是一维CNN光谱反射率的Python介绍: 1. 数据准备: 在使用一维CNN进行光谱反射率分析之前,首先需要准备好数据。通常,光谱数据以矩阵的形式表示,其中每一行代表一个样本,每一列代表一个波长点的反射率值。 2. 数据预处理: 在进行一维CNN之前,需要对数据进行预处理。常见的预处理步骤包括标准化、降噪、平滑等。标准化可以将数据缩放到相同的范围,降噪可以去除噪声干扰,平滑可以使数据更加平滑。 3. 模型构建: 使用Python中的深度学习框架(如TensorFlow、Keras等),可以构建一维CNN模型。一维CNN模型通常由卷积层、池化层和全连接层组成。卷积层用于提取特征,池化层用于降低数据维度,全连接层用于分类或回归任务。 4. 模型训练: 在构建好模型后,可以使用训练集对模型进行训练。训练过程中,需要定义损失函数和优化器,并设置训练的批次大小、迭代次数等参数。 5. 模型评估: 训练完成后,可以使用测试集对模型进行评估。常见的评估指标包括准确率、精确率、召回率等。 6. 模型应用: 训练好的模型可以用于预测新的光谱数据。将新的光谱数据输入到模型中,即可得到相应的分类或回归结果。 希望以上介绍对您有所帮助!如果您有任何进一步的问题,请随时提问。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值