[JAN]Deep transfer learning with joint adaptation networks

JAN是一种深度网络方法,通过联合最大均值差异(JMMD)在多个层进行跨域对齐,以实现无监督的领域适应。它扩展了DAN的能力,简化了训练过程,利用CNN处理源域和目标域数据,并通过核均值embedding的希尔伯特-施密特范数学习迁移网络。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

        DAN 的作者、清华大学的龙明盛在2017 年机器学习顶级会议ICML 上提出了JAN方法(Joint Adaptation Network),在深度网络中同时进行联合分布的自适应和对抗学习。JAN 方法将只对数据进行自适应的方式推广到了对类别的自适应,提出了JMMD 度量(Joint MMD)。

Abstract

        深度网络已成功地应用于学习可转移(transferable)的特征,以适应模型从源域到不同的目标域的转换。本文提出了联合自适应网络(JAN, joint adaptation networks),该网络基于联合最大平均偏差(JMMD,joint maximum mean discrepancy)准则,通过对多个区域特定层的联合分布进行跨区域对齐来学习迁移网络。采用对抗性训练策略最大化JMMD,使源域和目标域的分布更容易区分。学习可以通过随机梯度下降和反向传播计算的梯度在线性时间进行。实验证明,我们的模型在标准数据集上产生了最先进的结果。

1. Introduction

        在本文中,我们提出联合自适应网络(JAN,joint adaptation networks),通过对多个区域特定层的联合分布进行跨区域对齐来学习迁移网络,实现无监督的领域适应。JAN在很大程度上扩展了深度适应网络DAN(Long et al., 2015)对上述联合分布的推理能力,同时使训练过程更加简单。具体来说,JAN允许一个简单的转换管道,通过卷积神经网络(CNN)处理源域和目标域数据,然后在多个特定任务层对齐激活的联合分布。为了学习参数和实现alignment,,我们提出了联合最大均值差异(JMMD),它衡量源域数据和目标域数据的经验联合分布的核均值embedding 之间的希尔伯特-施密特范数。(which measures the Hilbert-Schmidt norm between kernel mean embedding of empirical joint distributions of source and target data.)

2. Related Work

        主要介绍了Transfer learning的目的、主要技术问题。

4. Joint Adaptation Networks

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值