传统的推荐模型(一)
发展脉络:类似搜索引擎中的倒排索引算法,先进行倒排,再构造共现矩阵从而减少计算量,最后计算相似度(UF,TF)。通过考虑热门物品或者热门用户的影响,设置权重指标,将热门物品和热门用户的影响降到最低(IIF,IUF),从而提高覆盖率,解决长尾问题。通过引入矩阵分解(MF),相当于对用户进行了分类,或者对物品进行了分类,一方面对计算进行了优化,一方面也提高了系统数据泛化的特性。隐语义模型,也是通过矩阵分解,探究隐藏关系,分解的维度可以通过梯度下降法求得。图模型,通过图的天然特性,即节点与节点之间的联系,来计算节点之间的相似度,从而进行推荐。
倒排索引
将文章变成词条,将词条变成向量。如TF-IDF算法。
TF即为统计词条频率,从而构造基础的向量。IDF即是考虑热门词条的影响,因为热门词条不能作为文章之间的区分标准,因此需加入权重因子,使热门词条最终的影响降到最低。