python机器学习基础——监督学习算法之k近邻分类模型

定义

K-nn算法可以说是最简单的机器学习算法构建模型,只需要保存训练数据集即可想要对新数据点做出预测,算法会在训练数据集中找到最近的临近点,也就是说他的最近邻。

利用sklearn实现k近邻

from sklearn.datasets import make_blobs
import mglearn
from sklearn.model_selection import train_test_split
import matplotlib.pyplot as plt
import numpy as np

# make_blobs是生成数据集的函数
X, y = make_blobs(centers=2, random_state=4, n_samples=30)
# 将生成的数据划分成训练集和测试集
X_train, X_test, y_train, y_test = train_test_split(X, y, random_state=0)
print(X_train.shape)
print(X_train)
# 然后导入类并将其实例化。这时可以设定参数,比如邻居的个数。这里,我们将其设为3
from sklearn.neighbors import KNeighborsClassifier
clf = KNeighborsClassifier(n_neighbors=3)
# 现在,利用训练集对这个分类器进行拟合。对于KNeighborsClassifer来说就是保存数据集,以便在预测时计算与邻居间的距离
clf.fit(X_train, y_train)
# 调用predict方法来对测试数据进行预测,对于测试集中的每个数据点,都要计算它在训练集的最近邻
# 然后找出其中出现次数最多的类别
print("Test set predictions:{}".format(clf.predict(X_test)))
# 为了评估模型的泛化能力好坏,我们可以对测试数据和测试标签调用score方法
print("Test set accuracy:{:.2f}".format(clf.score(X_test, y_test)))
# 可以看到,我们的模型精度约为88%,也就是说,在测试数据集中,模型对其中88%的样本预测的类别都是正确的

分析KNeighborsClassifier

对于二维数据集,我们还可以在xy平面上画出所有可能的测试点的预测结果。我们根据平面中每个点所属的类别对平面进行着色。这样可以查看决策边界即算法对类别0和类别1的分界线.
下列代码分别将1个、3个和9个邻居三种情况的决策边界可视化:

from sklearn.datasets import make_blobs
import mglearn
from sklearn.model_selection import train_test_split
import matplotlib.pyplot as plt
import numpy as np
X, y = make_blobs(centers=2, random_state=4, n_samples=30)
fig, axes = plt.subplots(1, 3, figsize=(10, 3))
for n_neighbors, ax in zip([1, 3, 9], axes):
    clf = KNeighborsClassifier(n_neighbors=n_neighbors).fit(X, y)
    mglearn.plots.plot_2d_separator(clf, X, fill=True, eps=0.5, ax=ax, alpha=.4)
    mglearn.discrete_scatter(X[:, 0], X[:, 1], y, ax=ax)
    ax.set_title("{} neighbor(s)".format(n_neighbors))
    ax.set_xlabel("feature 0")
    ax.set_ylabel("feature 1")
axes[0].legend(loc=3)
plt.show()

得到下图
在这里插入图片描述
从左图可以看出,使用单一邻居绘制的决策边界紧跟着训练数据。随着邻居个数越来越多,决策边界也越来越光滑。更平滑的边界对应更简单的模型,换句话说,使用更少的邻居对应更高的模型复杂度,而使用更多的邻居对应更低的模型复杂度。
假如考虑极端情况,即邻居个数等于训练集中所有数据点的个数那么每个测试点的邻居都完全相同,所有预测结果也完全相同

在现实世界的乳腺癌数据集上进行研究

from sklearn.datasets import load_breast_cancer

cancer = load_breast_cancer()
X_train, X_test, y_train, y_test = train_test_split(cancer.data, cancer.target, stratify=cancer.target, random_state=66)
trainning_accuracy = []
test_accuracy = []
# n_neighbors取值从110
neighbors_setting = range(1, 11)
for n_neighbors in neighbors_setting:
    # 构建模型
    clf = KNeighborsClassifier(n_neighbors=n_neighbors)
    clf.fit(X_train, y_train)
    # 记录训练集精度
    trainning_accuracy.append(clf.score(X_train, y_train))
    # 记录泛化精度
    test_accuracy.append(clf.score(X_test, y_test))

plt.plot(neighbors_setting, trainning_accuracy, label='traing accuracy')
plt.plot(neighbors_setting, test_accuracy, label="test accuray")
plt.ylabel("Accuracy")
plt.xlabel("n_neighbors")
plt.legend()
plt.show()

在这里插入图片描述
图像的x轴是n_neighbors,y轴是训练集精度和测试集精度,虽然现实世界的图像很少有非常平滑的, 但我们仍然可以看出过拟合和欠拟合的一些特征。

仅考虑单一近邻时,训练集上的预测结果十分完美,但随着邻居个数的增多,模型编的简单,训练集精度也随之下降

单一邻居时的测试集精度比使用更多邻居时要更低,这表示单一邻居的模型过于复杂。

与之相反,当考虑10个邻居时,模型又过于简单,性能甚至变得更差,最佳性能在中间的某处,邻居个数大约为6.不过记住这张图的坐标轴刻度,最差的性能为88%,这个结果仍然可以接受

  • 0
    点赞
  • 2
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值