常用分类算法介绍
分类算法是一类机器学习算法,用于将不同的数据实例分到预定义的类别或标签中。以下是一些常见的分类算法:
-
逻辑回归(Logistic Regression):通过对线性函数应用sigmoid函数,将数据映射到一个概率值,然后根据阈值对数据进行二分类。
-
决策树(Decision Tree):构建一棵树状结构来表示特征之间的关系,并根据特征的取值分割数据,最终将数据分到不同的类别中。
-
支持向量机(Support Vector Machine,SVM):寻找一个超平面来确保不同类别的数据之间的最大间隔。
-
K近邻算法(k-Nearest Neighbors,KNN):根据与未知样本最相似的k个已知样本的标签,对未知样本进行分类。
-
朴素贝叶斯(Na Bayes):基于贝叶斯定理和特征间的独立性假设,计算给定特征条件下各个类别的概率,并根据最大概率确定样本的类别。
-
随机森林(Random Forest):由多棵决策树组成的集成学习方法,利用投票或平均预测结果来进行分