【python】K近邻算法(k-Nearest Neighbors,KNN)解决分类问题

文章介绍了K近邻(KNN)算法,这是一种基于实例的分类和回归方法,依赖于数据实例之间的相似性。KNN算法包括选择K值、计算距离和决定分类的过程。在Python中,可以使用scikit-learn库的KNeighborsClassifier进行实现。此外,文章还提到了其他常见分类算法如逻辑回归、决策树等,并讨论了如何在实际应用中选择合适的算法。
摘要由CSDN通过智能技术生成

常用分类算法介绍

分类算法是一类机器学习算法,用于将不同的数据实例分到预定义的类别或标签中。以下是一些常见的分类算法:

  1. 逻辑回归(Logistic Regression):通过对线性函数应用sigmoid函数,将数据映射到一个概率值,然后根据阈值对数据进行二分类。

  2. 决策树(Decision Tree):构建一棵树状结构来表示特征之间的关系,并根据特征的取值分割数据,最终将数据分到不同的类别中。

  3. 支持向量机(Support Vector Machine,SVM):寻找一个超平面来确保不同类别的数据之间的最大间隔。

  4. K近邻算法(k-Nearest Neighbors,KNN):根据与未知样本最相似的k个已知样本的标签,对未知样本进行分类。

  5. 朴素贝叶斯(Na Bayes):基于贝叶斯定理和特征间的独立性假设,计算给定特征条件下各个类别的概率,并根据最大概率确定样本的类别。

  6. 随机森林(Random Forest):由多棵决策树组成的集成学习方法,利用投票或平均预测结果来进行分

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

傻傻虎虎

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值