卡拉兹(Callatz)猜想:
对任何一个正整数 n,如果它是偶数,那么把它砍掉一半;如果它是奇数,那么把 (3n+1) 砍掉一半。这样一直反复砍下去,最后一定在某一步得到 n=1。卡拉兹在 1950 年的世界数学家大会上公布了这个猜想,传说当时耶鲁大学师生齐动员,拼命想证明这个貌似很傻很天真的命题,结果闹得学生们无心学业,一心只证 (3n+1),以至于有人说这是一个阴谋,卡拉兹是在蓄意延缓美国数学界教学与科研的进展……
我们今天的题目不是证明卡拉兹猜想,而是对给定的任一不超过 1000 的正整数 n,简单地数一下,需要多少步(砍几下)才能得到 n=1?
输入格式:
每个测试输入包含 1 个测试用例,即给出正整数 n 的值。
输出格式:
输出从 n 计算到 1 需要的步数。
输入样例:
3
输出样例:
5
- 思路:
step1:输入n,只要没得到n=1就一直循环计算,并用step变量记录循环次数
step2:每次循环中,判断n奇偶,若奇n = ( 3 * n + 1) / 2;
,若偶n /= 2;
[注]:半年前(9月PAT)刚接触编程时,这道题看起来没有一点头绪。真的是盯着屏幕完全不知道如何写出第一行代码。想想也挺唏嘘的,现在看来这不是简单到懒得写的题目。虽然半年时间并没走很远,不过最初的恐惧已变为熟悉,未来还会有各种各样的未知恐惧,希望能永远敢于直视恐惧, Dare to know! , 奥利给!
- code:
//#include <bits/stdc++.h>
//using namespace std;
#include <stdio.h>
int main(){
int n, step = 0;
scanf("%d", &n);
while(n != 1){
if(n % 2){ //奇数
n = (3 * n + 1) / 2;
}else{
n /= 2;
}
step++;
}
printf("%d", step);
return 0;
}