正交性

本文介绍了向量空间的概念,包括欧几里得空间、广义向量空间和子空间的定义。强调了子空间的封闭性和维度的重要性,并探讨了行空间、列空间、矩阵的秩以及零空间。还提到了正交基、Gram-Schmidt过程和矩阵的QR分解在理论和应用中的价值。
摘要由CSDN通过智能技术生成

空间

空间是一个集合

欧几里得空间:有序实数元组的集合(x, y …)

二维:R2 (R:实数集,2:每个元组包含两个元素)

(点集、起点为原点的向量集合)

-> 向量空间:空间中的元素都是向量

  • 理论:

对于向量:必须定义两种运算 (加法 、 数量乘法)

这两种运算必须满足十条性质:

  1. 封闭性: u + v, k · u (加法和乘法) 都封闭(closure)

  2. 加法:交换律,结合律

  3. 零律:存在零元O属于向量空间,使得: u + O = u

  4. 对每个u存在-u使得u + (-u) = O

  5. 乘法:结合律(数量),分配律(向量,数量)

  6. 1 * u = u

欧几里得空间:Rn 是向量空间

广义向量空间

所有 m * n 的矩阵,构成的向量空间

所有多项式,构成一个向量空间

某类函数构成的向量空间

子空间

V是向量空间,S是V的子集,且S还是向量空间,则S是V的子空间

定理:

V是向量空间,S是V的子集,且S对加法和数量乘法封闭,则S是V的子空间

封闭性:基石

向量空间的性质:

  1. 对于每一个u存在-u,使得u + (-u) = O
  2. 如果u属于V,k是一个实数,则ku属于V

证明:0 * u = O(不在欧几里得空间,原来的性质证明时不可用)

证明: -u = -1 * u

若S对乘法封闭:0 * u = O, 存在 O 在 S 中, -1 * u = -u 在 S中

结论:

向量空间V的子空间

1)存在O

2) ∀ u ⃗ , ∃ − u ⃗ \forall \vec{u}, \exists -\vec{u} u ,u

欧几里得空间的子空间

过原点的直线是R2的子空间,但不过原点的直线不是(对加法,数量乘法不封闭)

应用:机器学习,降维(减少冗余)

维度

空间的基:一组向量

1) 生成空间

2)线性无关

维度 (dimension):空间的基中向量的个数

dim(R2) = 2

子空间和维度

子空间维度 小于 向量中元素的个数(在原空间中的坐标表示)

生成空间的维度:找基(子集,不断删去可以被线性表示的向量)

行空间 和 矩阵的行秩

Gauss-Jordan消元法:将矩阵化为行最简,结果的每一行是原来矩阵各行的一个线性组合

假设有n个零行,则这n行对应的行向量都可表示成其他向量的线性组合,这个向量都可以删去

  • 求一组向量: v 1 ⃗ , v 2 ⃗ , . . . v p ⃗ \vec{v_1}, \vec{v_2}, ... \vec{v_p} v1 ,v2 ,...vp , 其生成空间的维度是多少?

将这一组向量,按行排列成一个矩阵,执行Gauss-Jordan消元法(化为RREF),非零行的个数即为其生成空间的维度

矩阵行向量生成的空间:行空间(Row Space)

列向量生成的空间,列空间(Column Space)

矩阵的行秩(Row Rank):矩阵行最简形式的非零行数量,即行空间的维度

  • 如何求出行空间的一组基?

行最简形式中的非零行的行向量就是行空间的一组基

列空间

A n ∗ n = ( α 1 ⃗ , α 2 ⃗ . . . α n ⃗ ) A_{n*n} = ( \vec{\alpha_1}, \vec{\alpha_2} ... \vec{\alpha_n} ) Ann=(α1 ,α2 ...αn

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值