第四章 矩阵分解

第四章 Matrix Decompositions

4.1 Determinant and Trace

4.1.1 Determinant

1.行列式

只有方阵 A ∈ R n × n A \in \R^{n \times n} ARn×n具有行列式,通常记矩阵A的行列式为 d e t ( A ) det(A) det(A) ∣ A ∣ \vert A \vert A
d e t ( A ) = ∣ a 11 a 12 ⋯ a 1 n a 21 a 22 ⋯ a 2 n ⋮ ⋮ ⋱ ⋮ a n 1 a n 2 ⋯ a n n ∣ det(A)= \left \vert \begin{matrix} a_{11} &a_{12} & \cdots & a_{1n} \\ a_{21} &a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{n1} &a_{n2} & \cdots & a_{nn} \\ \end{matrix} \right\vert det(A)=a11a21an1a12a22an2a1na2nann
方阵A的行列式是将矩阵A映射为一个实数的函数。

2.计算行列式

(1)三角矩阵

若对于 i > j , T i j = 0 i>j ,T_{ij}=0 i>j,Tij=0,则称方阵T为上三角矩阵。(即对角线下方全为0)。

若对于 i < j , T i j = 0 i<j ,T_{ij}=0 i<j,Tij=0,则称方阵T为下三角矩阵。(即对角线上方全为0)。

则三角矩阵 T ∈ R n × n T \in \R^{n\times n} TRn×n
d e t ( T ) = ∏ i = 1 n T i i det(T)=\prod ^n _{i=1} T_{ii} det(T)=i=1nTii
(2)Laplace Expansion

方阵 A ∈ R n × n A \in \R^{n \times n} ARn×n j = 1 , . . . , n j=1,...,n j=1,...,n

从列计算
d e t ( A ) = ∑ k = 1 n ( − 1 ) k + j a k j d e t ( A k , j ) det(A)=\sum _{k=1} ^n (-1)^{k+j} a_{kj}det(A_{k,j}) det(A)=k=1n(1)k+jakjdet(Ak,j)
从行计算
d e t ( A ) = ∑ k = 1 n ( − 1 ) k + j a j k d e t ( A j , k ) det(A)=\sum _{k=1} ^n (-1)^{k+j} a_{jk}det(A_{j,k}) det(A)=k=1n(1)k+jajkdet(Aj,k)
其中$A_{k,j} $ 表示矩阵A去掉 k 行 j 列剩下的子矩阵。

3.行列式性质

(1)矩阵乘积的行列式等于矩阵行列式的乘积, d e t ( A B ) = d e t ( A ) d e t ( B ) det(AB)=det(A)det(B) det(AB)=det(A)det(B)

(2)矩阵转置后行列式不变, d e t ( A ) = d e t ( A T ) det(A)=det(A^T) det(A)=det(AT)

(3)若矩阵A是可逆的,则 d e t ( A − 1 ) = 1 d e t ( A ) det(A^{-1})=\frac{1}{det(A)} det(A1)=det(A)1

(4)相似矩阵行列式相同。

(5)将行列式某行或某列的数倍加到另一行(列),行列式不变。

(6) d e t ( λ A ) = λ n d e t ( A ) det(\lambda A)= \lambda ^n det(A) det(λA)=λndet(A)

(7)交换两行(列),行列式符号改变。

注:

根据性质5、6、7,则可先使用高斯变化将矩阵A化为行阶梯型,然后使用三角矩阵行列式计算方法计算行列式。

4.定理(使用行列式判断矩阵可逆)

方阵 A ∈ R n × n A \in \R^{n \times n} ARn×nA可逆 当且仅当 d e t ( A ) ≠ 0 det(A)\neq 0 det(A)=0

方阵 A ∈ R n × n A \in \R^{n \times n} ARn×n d e t ( A ) ≠ 0 det(A)\neq 0 det(A)=0 当且仅当 $rank(A)=n $ 。即矩阵A可逆当且仅当它是满秩。

4.1.2 Trace

1.定义

方阵 A ∈ R n × n A \in \R^{n \times n} ARn×n 的迹
t r ( A ) : = ∑ i = 1 n a i i tr(A):= \sum _{i=1} ^n a_{ii} tr(A):=i=1naii
2.迹的性质

  • t r ( A + B ) = t r ( A ) + t r ( B ) , A , B ∈ R n × n tr(A+B) = tr(A)+tr(B),A,B\in \R^{n \times n} tr(A+B)=tr(A)+tr(B),A,BRn×n

  • t r ( α A ) = α t r ( A ) , α ∈ R , A ∈ R n × n tr(\alpha A)= \alpha tr(A),\alpha \in \R,A\in \R^{n \times n} tr(αA)=αtr(A),αR,ARn×n

  • t r ( I n ) = n tr(I_n)= n tr(In)=n

  • t r ( A B ) = t r ( B A ) , A ∈ R n × k , B ∈ R k × n tr(AB)= tr(BA), A \in \R^{n \times k},B\in \R^{k \times n} tr(AB)=tr(BA),ARn×k,BRk×n

  • 矩阵乘积的迹,循环排列后,其迹不变

    t r ( A K L ) = t r ( K L A ) = t r ( L A K ) , A ∈ R n × k , K ∈ R k × l , L ∈ R l × n tr(AKL)= tr(KLA)=tr(LAK), A \in \R^{n \times k},K \in \R^{k \times l},L \in \R^{l \times n} tr(AKL)=tr(KLA)=tr(LAK),ARn×k,KRk×l,LRl×n

3.特征多项式

方阵 A ∈ R n × n A \in \R^{n \times n} ARn×n λ ∈ R \lambda \in \R λR
p A ( λ ) : = d e t ( A − λ I ) = c 0 + c 1 λ + c 2 λ 2 + . . . + c n − 1 λ n − 1 + ( − 1 ) n λ n p_A(\lambda) := det(A-\lambda I) \\ = c_0 +c_1 \lambda + c_2\lambda^2+...+c_{n-1}\lambda^{n-1} + (-1)^n\lambda^n \\ pA(λ):=det(AλI)=c0+c1λ+c2λ2+...+cn1λn1+(1)nλn
其中
c 0 = d e t ( A ) c n − 1 = ( − 1 ) n − 1 t r ( A ) c_0=det(A) \\ c_{n-1}= (-1)^{n-1} tr(A) c0=det(A)cn1=(1)n1tr(A)

4.2 Eigenvalues and Eigenvectors

1.定义(eigenvalue,eigenvector)

方阵 A ∈ R n × n A \in \R^{n \times n} ARn×n 。若 A x = λ x Ax = \lambda x Ax=λx ,则

λ ∈ R \lambda \in \R λR 是矩阵A的特征值, x ∈ R n ╲ x\in \R^n \diagdown xRn {0} 是对应的特征向量。

方程 A x = λ x Ax = \lambda x Ax=λx 称为特征方程。

注: 下列语句是等价的

  • $\lambda $ 是矩阵 A ∈ R n × n A \in \R^{n \times n} ARn×n 的一个特征向量

  • 存在 x ∈ R n ╲ x\in \R^n \diagdown xRn {0} 使 A x = λ x Ax = \lambda x Ax=λx 。或 ( A − λ I n ) = 0 (A-\lambda I_n)=0 (AλIn)=0 具有非零解。

  • r k ( A − λ I n ) < n rk(A-\lambda I_n)<n rk(AλI

  • 2
    点赞
  • 3
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值