变化检测阅读文献(一)

该文提出了一种名为ReCNN的新型递归卷积神经网络,用于多光谱图像的变化检测。ReCNN结合CNN和RNN,从双时相多光谱图像中提取光谱-空间-时间特征,通过端到端训练进行变化检测。实验在多个数据集上进行,与传统方法比较,展示了ReCNN在捕捉时间相关性和提高检测性能方面的优势。
摘要由CSDN通过智能技术生成

变化检测文献阅读(一)

Learning Spectral-Spatial-Temporal Features via a Recurrent Convolutional Neural Network for Change Detection in Multispectral Imagery(2019 TGAS)


摘要

本文提出了ReCNN新的递归卷积神经网络结构,该结构在多光谱图像变化检测的统一框架中训练学习联合光谱-空间-时间特征表示。为此,我们将卷积神经网络和递归神经网络合并为一个端到端网络。前者可以生成丰富的光谱空间特征表示,而后者可以有效地分析双时图像中的时间相关性。


一、INTRODUCTION

文献中提出了许多方法来更好的识别土地覆盖变化。
1.变化向量分析(CVA):分析双时像图像的多光谱像素可能发生的多次变化。
2.主成分分析(PCA):可用于差分图像和叠加图像。
3.Gram-Schmidt变换:目标是减少数据相关性。
4.多元变化检测(MAD):试图使独立转换变量的方差最大化,和对输入数据的线性缩放不变性。
5.慢特征分析(SFA):能够从多时相图像中提取最具时间不变的成分,将数据转换为新的特征空间,并在该空间中抑制不变像素的差异,以便更好地分离变化区域。
6.稀疏学习:Erturket等人[14]对叠加的多时相图像应用稀疏学习,并期望得到的稀疏解在多时相数据之间不会有很大差异。
7.深度信念网络(DBN):从两次图像采集中提取的特征向量被叠加起来,用于获得一个表示,其中的变化更加明显。使用这种特征表示,通过图像差分更容易检测变化。

在本文中,用端到端网络来学习联合光谱-空间-时间特征来用于变化检测。—ReCNN
ReCNN结合了卷积神经网络CNN和RNN。
CNN部分将输入(一对3D多光谱patch)转换为抽象的光谱空间特征表示,而RNN部分不仅用于建模时间依赖性,还用于预测最终标签(即更改、不变或更改类型)。换句话说,所提出的ReCNN的特征将与比特时间图像中的光谱、空间和时间成分相关的信息封装起来,使它们对整体变化检测任务有用。对于多时相图像分析,所提出的方法在三个主要方面对文献做出了贡献:
1) 它能够通过结构化深层结构的学习来提取多时相数据的光谱时空特征表示。
2) 它与用于多光谱/超光谱数据分类的二维CNN具有相同的特性,即直接从多光谱数据学习信息光谱-空间特征表示,不需要手工制作视觉特征,也不需要预处理步骤。
3) 它与RNN具有相同的特性,能够使用复杂的任务驱动方法来提取端到端架构中的时间特征,并最终为图像序列生成标签,从而对比特时间序列之间的时间相关性进行建模。

二、METHODOLOGY

1.网络架构

ReCNN由不同类型的网络结构组成:CNN、RNN和全连接网络。可通过带一个损失函数的反向传播进行端到端的训练。
1.使用卷积提取空间相关特征向量
2.使用RNN提取两幅图时间相关特征
3.ReCNN的全连接层通过在整个序列中来预测双时态多光谱patch的标签
通过将网络应用于图像中的所有像素,得以获得整个变化检测图。

2.通过CNN网络提取光谱-空间特征

所需要的简单的CNN网络即可。(类别少、多光谱图像的空间分辨率有限)
1.CNN使用双分支结构,并行处理两个两个时像,其中使用较小的卷积核3*3,且不采用最大池化层和空间填充。
2.在ReCNN中使用了扩张卷积,能够通过先行增加的参数数量来增大感受野,在增加有效感受野的同时提供显著的参数减少。

在这里插入图片描述

3.通过RNN建立时间依赖

RNN能够具有一个循环隐藏状态来处理依赖的顺序输入。测试了以下三种RNN网络:
1.全连接RNN:
2.LSTM:
3.GRU:

4.网络训练

框架:基于TensorFlow
优化器:Adam
最后一个全连接层使用sigmoid和softmax作为激活函数分别用于二分类和多分类变化检测。

三、EXPERIMENTAL RESULTS AND DISCUSSION

1.数据集选取

Taizhou Data
Epplock Lake

2.评估标准

OA:指数显示正确分类的项目像素除以测试样本数。
Kappa系数:该指标是最终变化检测图和地面真相GT图直接一致性的统计度量。

传统变化检测方法

CVA:无监督方法,用于多光谱图像变化检测任务。
PCA:计算简单,可用于实时应用。
MAD:这是一个经典图像变换的无监督算法,可用于双时像多光谱图像变化和检测。
IRMAD
DT
SVM
CNN
RNN
ReCNN-FC
ReCNN-GRU
ReCNN-LSTM

其中CVA、PCA、MAD、IRMAD、RNN被用于二分类变化检测,其中使用K-均值算法自动选择无监督方法的阈值。
DT、SVM、RNN被用于多分类变化检测任务。

四、CONCLUSION

提示:这里对文章进行总结:
ReCNN结合了CNN和RNN的优点,从双时多光谱图像中提取联合光谱-空间-时间特征,并预测变化类型。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值