微分中值定理——(罗尔定理、拉格朗日定理、导数极限定理、达布定理、柯西定理)

定理1(罗尔(Rolle)中值定理)

若函数f满足如下条件:

(i)f在闭区间[a,b]上连续;

(ii)f在开区间(a,b)上可导;

(iii)f(a)=f(b);

则在(a,b)上至少存在一点\xi使得f'(\xi )=0.(1)

罗尔定理的几何意义:在每一点都可导的一段连续曲线上,如果曲线的两端高度相等,则至少存在一条水平直线,如图所示;

注:定理中的三个条件缺一不可。

定理2(拉格朗日(Lagrange)中值定理)

若函数f满足如下条件:

(i)f在闭区间[a,b]上连续;

(ii)f在开区间(a,b)上可导;

则在(a,b)上至少存在一点\xi使得f'(\xi )=\frac{f(b)-f(a)}{b-a}.(2)

显然,特别当f(a)=f(b)时,本定理的结论即为罗尔定理的结论,这表明罗尔定理是拉格朗日定理的一个特殊情形。

拉格朗日中值定理的几何意义:在满足定理条件的曲线y=f(x)上至少存在一点P(\xi ,f(\xi ))该曲线在该点处的切线平行于曲线两端点的连线AB,如图所示;

公式(2)称为拉格朗日公式.

拉格朗日公式还有几种等价表示形式

f(b)-f(a)=f'(\xi)(b-a),a<\xi<b;

f(b)-f(a)=f'(a+\theta (b-a))(b-a),0<\theta <1;

f(a+h)-f(a)=f'(a+\theta h)h,0<\theta <1;

推论1:若函数f在区间I上可导,且f'(x)\equiv 0,x\in I,则f为I上的一个常量函数。

推论2:若函数f和g均在区间I上可导,且f'(x)\equiv g'(x),x\in I,则在区间I上f(x)与g(x)只相差某一常数,即f(x)=g(x)+c  (c为某一常数).

推论3(导数极限定理)

设函数f在点x_0的某邻域U(x_0)上连续,在U^{\circ}(x_0)内可导,且极限\lim_{x\to x_0}f'(x)存在,则f在点x_0可导,且f'(x_0)=\lim_{x\to x_0}f'(x).

导数极限定理适合于用来求分段函数的导数。

定理3

设f(x)在区间I上可导,则f(x)在I上递增(减)的充要条件是f'(x)\geqslant 0(\leqslant 0).

定理4

若函数f在(a,b)上可导,则f在(a,b)上严格递增(递减)的充要条件是:

(i)对一切x\in (a,b)f'(x)\geqslant 0(f'(x)\leqslant 0);

(ii)在(a,b)的任何子区间上f'(x)\not\equiv 0.

推论:设函数在区间I上可微,若f'(x)>0(f'(x)<0),则f在I上严格递增(严格递减)。

定理5(达布(Darboux)定理)

若函数f在[a,b]上可导,且f'_+(a)\neq f'_-(b),k为介于f'_+(a), f'_-(b)之间任一实数,则至少存在一点\xi \in (a,b),使得f'(\xi)=k.

有时定理5称为导数的介值定理.

推论:设函数f(x)在区间I上满足f'(x)\neq 0那么f(x)在区间I上严格单调。

定理6(柯西中值定理)

设函数f和g满足

(i)在[a,b]上都连续;

(ii)在(a,b)上都可导;

(iii)f'(x)g'(x)不同时为零;

(iv)g(a)\neq g(b),

则存在\xi \in (a,b),使得\frac{f'(\xi)}{g'(\xi)}=\frac{f(b)-f(a)}{g(b)-g(a)}.(3)

柯西定理的几何意义:把f,g这两个函数写作以x为参量的参数方程\left\{\begin{matrix}u=g(x)\\ v=f(x) \end{matrix} \right在uOv平面上表示一段曲线,如图所示,由于(3)式右边的\frac{f(b)-f(a)}{g(b)-g(a)}表示连接该曲线两端的弦AB的斜率,而(3)式左边的\frac{f'(\xi)}{g'(\xi)}=\frac{dv}{du}\mid _{x=\xi}则表示该曲线上与x=\xi相对应的一点C(g(\xi),f(\xi))处的切线的斜率,因此(3)式即表示上述切线与弦AB互相平行。

 

评论 3
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值