一元函数微分学的概念与计算

目录:点我

思维导图下载:点我

一元函数微分学的概念与计算

一、导数定义

f ′ ( x 0 ) = lim ⁡ △ x → 0 f ( x 0 + △ x ) − f ( x 0 ) △ x = lim ⁡ x → x 0 f ( x ) − f ( x 0 ) x − x 0 f'(x_0)=\lim_{\triangle x \to 0}\frac{f(x_0+\triangle x)-f(x_0)}{\triangle x}=\lim_{x\to x_0}\frac{f(x)-f(x_0)}{x-x_0} f(x0)=x0limxf(x0+x)f(x0)=xx0limxx0f(x)f(x0)

二、微分定义

设函数 y = f ( x ) y=f(x) y=f(x) 在点 x 0 x_0 x0 的某邻域内有定义,且 x 0 + △ x x_0+\triangle x x0+x 在该邻域内,对于函数增量 △ y = f ( x 0 + △ x ) − f ( x 0 ) \triangle y=f(x_0+\triangle x)-f(x_0) y=f(x0+x)f(x0) ,若存在与 △ x \triangle x x 无关的常数 A A A ,使得 △ y = A △ x + o ( △ x ) \triangle y=A\triangle x+o(\triangle x) y=Ax+o(x) ,其中 o ( △ x ) o(\triangle x) o(x) 是在 △ x → 0 \triangle x\to 0 x0 时比 △ x \triangle x x 更高阶的无穷小,则称 f ( x ) f(x) f(x) 在点 x 0 x_0 x0 处可微,并称 A △ x A\triangle x Ax f ( x ) f(x) f(x) 在点 x 0 x_0 x0 处的微分,记作 d y ∣ x = x 0 = A △ x dy|_{x=x_0}=A\triangle x dyx=x0=Ax 或者 d f ( x ) ∣ x = x 0 = A △ x df(x)|_{x=x_0}=A\triangle x df(x)x=x0=Ax 。又 △ x = d x \triangle x=dx x=dx ,故 d y ∣ x = x 0 = A d x dy|_{x=x_0}=Adx dyx=x0=Adx

三、计算

1. 基本求导公式

( log ⁡ α x ) ′ = 1 x ln ⁡ α ( α > 0 , α ≠ 0 ) (\log_\alpha x)'=\frac{1}{x\ln\alpha}(\alpha>0,\alpha\ne0) (logαx)=xlnα1(α>0,α=0)
( arcsin ⁡ x ) ′ = 1 1 − x 2 (\arcsin x)'=\frac{1}{\sqrt{1-x^2}} (arcsinx)=1x2 1
( tan ⁡ x ) ′ = sec ⁡ 2 x (\tan x)'=\sec^2x (tanx)=sec2x
( arccos ⁡ x ) ′ = − 1 1 − x 2 (\arccos x)'=-\frac{1}{\sqrt{1-x^2}} (arccosx)=1x2 1
( cot ⁡ x ) ′ = − csc ⁡ 2 x (\cot x)'=-\csc^2x (cotx)=csc2x
( arctan ⁡ x ) ′ = 1 1 + x 2 (\arctan x)'=\frac{1}{1+x^2} (arctanx)=1+x21
( a r c c o t x ) ′ = − 1 1 + x 2 (arccotx)'=-\frac{1}{1+x^2} (arccotx)=1+x21
( sec ⁡ x ) ′ = sec ⁡ x tan ⁡ x (\sec x)'=\sec x\tan x (secx)=secxtanx
( csc ⁡ x ) ′ = − csc ⁡ x cot ⁡ x (\csc x)'=-\csc x\cot x (cscx)=cscxcotx
[ ln ⁡ ( x + x 2 + 1 ) ] ′ = 1 x 2 + 1 \left[\ln\left(x+\sqrt{x^2+1}\right)\right]'=\frac{1}{\sqrt{x^2+1}} [ln(x+x2+1 )]=x2+1 1
[ ln ⁡ ( x + x 2 − 1 ) ] ′ = 1 x 2 − 1 \left[\ln\left(x+\sqrt{x^2-1}\right)\right]'=\frac{1}{\sqrt{x^2-1}} [ln(x+x21 )]=x21 1

2. 复合函数求导

u = g ( x ) u=g(x) u=g(x) 在点 x x x 处可导, y = f ( u ) y=f(u) y=f(u) 在点 u = g ( x ) u=g(x) u=g(x) 处可导,则:
{ f [ g ( x ) ] } ′ = f ′ [ g ( x ) ] g ′ ( x ) \left \{f \left [g \left (x \right ) \right ] \right \} ' = f' \left [ g\left( x \right) \right ] g'(x) {f[g(x)]}=f[g(x)]g(x)

3. 隐函数求导

等号两边同时对自变量求导即可。

4. 反函数求导

y x ′ = d y d x = 1 d x d y = 1 x y ′ y'_x=\frac{dy}{dx}=\frac{1}{\frac{dx}{dy}}=\frac{1}{x'_y} yx=dxdy=dydx1=xy1
y x x ′ ′ = d 2 y d x 2 = d ( d y d x ) d x = d ( 1 x y ′ ) d x = d ( 1 x y ′ ) d y ⋅ 1 x y ′ = − x y y ′ ′ ( x y ′ ) 3 y''_{xx}=\frac{d^2y}{dx^2}=\frac{d(\frac{dy}{dx})}{dx}=\frac{d(\frac{1}{x'_y})}{dx}=\frac{d(\frac{1}{x'_y})}{dy}\cdot\frac{1}{x'_y}=-\frac{x''_{yy}}{(x'_y)^3} yxx=dx2d2y=dxd(dxdy)=dxd(xy1)=dyd(xy1)xy1=(xy)3xyy

5. 分段函数求导

分段点用定义法,非分段点用公式法。

6. 多项乘除、开方、乘方求导

使用对数求导法,将复杂函数的项转化为对数中的加减项处理。

7. 幂指函数求导

将幂指函数转化为指数函数求导。

8. 参数方程求导

d y d x = d y d t d x d t \frac{dy}{dx}=\frac{\frac{dy}{dt}}{\frac{dx}{dt}} dxdy=dtdxdtdy
d 2 y d x 2 = d ( d y d t ) d t d x d t = y ′ ′ ( t ) x ′ ( t ) − x ′ ′ ( t ) y ′ ( t ) [ x ′ ( t ) ] 3 \frac{d^2y}{dx^2}=\frac{\frac{d(\frac{dy}{dt})}{dt}}{\frac{dx}{dt}}=\frac{y''(t)x'(t)-x''(t)y'(t)}{\left[x'\left(t\right)\right]^3} dx2d2y=dtdxdtd(dtdy)=[x(t)]3y(t)x(t)x(t)y(t)

9. 变限积分求导

F ( x ) = ∫ φ 1 ( x ) φ 2 ( x ) f ( t ) d t F(x)=\int_{\varphi_1(x)}^{\varphi_2(x)}f(t)dt F(x)=φ1(x)φ2(x)f(t)dt
F ′ ( x ) = f [ φ 2 ( x ) ] φ 2 ′ ( x ) − f [ φ 1 ( x ) ] φ 1 ′ ( x ) F'(x)=f[\varphi_2(x)]\varphi_2'(x)-f[\varphi_1(x)]\varphi_1'(x) F(x)=f[φ2(x)]φ2(x)f[φ1(x)]φ1(x)

10. 高阶导数求导

  • 数学归纳法处理
  • 泰勒公式(麦克劳林展开)
  • 使用莱布尼茨公式: ( u v ) ( n ) = ∑ k = 0 n C n k u ( n − k ) v ( k ) (uv)^{(n)}=\sum_{k=0}^nC_n^ku^{(n-k)}v^{(k)} (uv)(n)=k=0nCnku(nk)v(k)
  • 1
    点赞
  • 10
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 0
    评论
一元函数积分学中常考的凑微分法是一种通过巧妙的代换将被积函数转化成更易积分的形式的方法。具体来说,凑微分法常用于以下两种情况: 1. 被积函数中含有若干项的乘积,其中某些项的微分形式与整个被积函数相同或与其他项的微分形式相同,但是某些项的微分形式又与整个被积函数不同。此时,我们可以通过代换将这些微分形式相同或相似的项合并在一起,从而得到更易积分的形式。 例如,对于形如 $\int x\sqrt{1-x^2}\mathrm{d}x$ 的积分,我们可以令 $u=1-x^2$,则 $\mathrm{d}u=-2x\mathrm{d}x$,从而原积分可以转化为 $\int -\frac{1}{2}\sqrt{u}\mathrm{d}u$,最后再通过简单的换元即可求解。 2. 被积函数中含有若干项的和,其中某些项可以表示为其他项的导数形式。此时,我们可以通过分部积分将这些项分离出来,从而得到更易积分的形式。 例如,对于形如 $\int xe^x\mathrm{d}x$ 的积分,我们可以将其看作是 $\int x\mathrm{d}(e^x)$ 的形式,从而可以利用分部积分公式将其拆分为 $xe^x-\int e^x\mathrm{d}x$ 的形式,最后再通过简单的求导即可得到积分的结果。 需要注意的是,凑微分法虽然在某些情况下可以简化积分的过程,但是也存在一些风险。例如,如果代换不当或者分部积分的选择不合适,可能会导致积分结果的错误或者复杂度的增加。因此,在使用凑微分法时,需要仔细分析被积函数的形式,并且在实践中多加练习,才能熟练掌握这种技巧。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

BeZer0

打赏一杯奶茶支持一下作者吧~~

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值