文章目录
第二章 一元函数的导数与微分概念及其计算
一、一元函数的导数与微分
(一)导数的定义、几何意义与力学意义
- 导数的定义
2.1 定义
2.2 左右导数 - 几何意义(切线斜率)
- 力学意义(物理的速度)
(二)单侧可导与双侧可导的关系
2.1 可导的充要条件,左右导数存在且相等
(三)可微的定义、微分的几何意义及可微、可导与连续之间的关系
- 可微的定义
- 微分的几何意义
Δy
是f(x)
的增量,dy
是切线的增量 - 可导、可微与连续之间的关系
可微与可导等价
(四)函数在区间上的可导性,导函数及高阶导数
- 函数在区间上的可导性
- 导函数
- 二阶导数及高阶导数
- 二阶导数的力学意义(物理的加速度)
(五)奇偶函数与周期函数的导数性质
奇的导数为偶,偶的导数为奇
周期函数的导数也是周期函数且周期相同
二、按定义求导数及其适用的情形
(一)按定义求导数
注意,Δx→0
时,若f(x + Δx) - f(x)
不是无穷小量则f '(x0)
不存在
(二)适合用定义求导数的几种情形
分段函数
只说连续没说可导
(三)利用导数的定义求极限
Ⅰ 直接按导数的定义求,注意增量的替换,只要趋近于0即可替换
Ⅱ 数列极限与导数的关系