一元函数积分学的概念与性质

目录:点我

思维导图下载:点我

一元函数积分学的概念与性质

一、七大性质

  1. f ( x ) f(x) f(x) 为奇函数 ⇒ f ′ ( x ) \Rightarrow f'(x) f(x) 为偶函数;
  2. f ( x ) f(x) f(x) 为偶函数 ⇒ f ′ ( x ) \Rightarrow f'(x) f(x) 为奇函数;
  3. f ( x ) f(x) f(x) 是以 T T T 为周期的周期函数 ⇒ f ′ ( x ) \Rightarrow f'(x) f(x) 是以 T T T 为周期的周期函数;
  4. f ( x ) f(x) f(x) 为奇函数 ⇒ { ∫ 0 x f ( t ) d t 为 偶 函 数 , ∫ a x f ( t ) d t 为 偶 函 数 ( a ≠ 0 ) . \Rightarrow \left\{\begin{matrix}\int_{0}^{x}f(t)dt 为偶函数, \\ \int_{a}^{x}f(t)dt 为偶函数(a\ne0).\end{matrix}\right. {0xf(t)dt,axf(t)dt(a=0).
  5. f ( x ) f(x) f(x) 为偶函数 ⇒ { ∫ 0 x f ( t ) d t 为 奇 函 数 , ∫ a x f ( t ) d t 不 确 定 ( a ≠ 0 ) . \Rightarrow \left\{\begin{matrix}\int_{0}^{x}f(t)dt 为奇函数, \\ \int_{a}^{x}f(t)dt 不确定(a\ne0).\end{matrix}\right. {0xf(t)dt,axf(t)dt(a=0).
  6. { f ( x ) 是 以 T 为 周 期 的 周 期 函 数 , ∫ 0 T f ( x ) d x = 0 ⇒ { ∫ 0 x f ( t ) d t 是 以 T 为 周 期 的 周 期 函 数 , ∫ a x f ( t ) d t 是 以 T 为 周 期 的 周 期 函 数 ( a ≠ 0 ) . \left\{\begin{matrix} f(x)是以T为周期的周期函数, \\ \int_{0}^{T}f(x)dx=0\end{matrix}\right.\Rightarrow\left\{\begin{matrix}\int_{0}^{x}f(t)dt是以T为周期的周期函数, \\ \int_{a}^{x}f(t)dt是以T为周期的周期函数(a\ne0).\end{matrix}\right. {f(x)T,0Tf(x)dx=0{0xf(t)dtT,axf(t)dtT(a=0).
  7. f ( x ) f(x) f(x) 是以T为周期的周期函数 ⇒ ∫ 0 T f ( x ) d x = ∫ a a + T f ( x ) d x \Rightarrow\int_{0}^{T}f(x)dx=\int_{a}^{a+T}f(x)dx 0Tf(x)dx=aa+Tf(x)dx ∀ \forall 常数 a a a

二、积分比大小

1. 用几何意义

①: ∫ a b f ( x ) d x = F ( b ) − F ( a ) \int_{a}^{b}f(x)dx=F(b)-F(a) abf(x)dx=F(b)F(a)
②: ∫ x 0 x f ′ ( t ) d t = f ( x ) − f ( x 0 ) \int_{x_0}^{x}f'(t)dt=f(x)-f(x_0) x0xf(t)dt=f(x)f(x0)
③: ∫ − a a f ( x ) d x = { 2 ∫ 0 a f ( x ) d x , f ( x ) = f ( − x ) , 0 , f ( x ) = − f ( − x ) . \int_{-a}^{a}f(x)dx=\left\{\begin{matrix}2\int_{0}^{a}f(x)dx, f(x)=f(-x), \\ 0, f(x)=-f(-x).\end{matrix}\right. aaf(x)dx={20af(x)dx,f(x)=f(x),0,f(x)=f(x).

2. 用保号性

①:看出正负,如 ∣ x ∣ ≥ 0 |x|\ge0 x0 ;当 x ∈ [ π , 2 π ] x\in[\pi,2\pi] x[π,2π] 时, sin ⁡ x ≤ 0 \sin x\le0 sinx0 等;
②:作差, I 1 − I 2 I_1-I_2 I1I2 ,再换元,常用 x = π ± t x=\pi\pm t x=π±t x = π 2 ± t x=\frac{\pi}{2}\pm t x=2π±t

三、定积分定义

1. 基本形

n + i ( a n + b i , a b ≠ 0 ) n+i(an+bi,ab\ne0) n+i(an+bi,ab=0) n 2 + i 2 n^2+i^2 n2+i2 n 2 + n i n^2+ni n2+ni 等式子凑为 i n \frac{i}{n} ni 即可。

2. 放缩形

通常使用夹逼准则处理,或者放缩后再凑为基本形。

3. 变量形

在通项中含 x n i \frac{x}{n}i nxi ,考虑使用以下式子: lim ⁡ n → ∞ ∑ i = 1 n f ( 0 + x − 0 n i ) x − 0 n = ∫ 0 x f ( t ) d t . \lim_{n\to\infty}\sum_{i=1}^{n}f\left(0+\frac{x-0}{n}i\right)\frac{x-0}{n}=\int_{0}^{x}f(t)dt. nlimi=1nf(0+nx0i)nx0=0xf(t)dt.

四、反常积分判敛

1. 概念

①: ∫ a + ∞ f ( x ) d x \int_{a}^{+\infty}f(x)dx a+f(x)dx 叫无穷区间上的反常积分;
②: ∫ a b f ( x ) d x \int_{a}^{b}f(x)dx abf(x)dx ,其中 lim ⁡ x → a + f ( x ) = ∞ \lim_{x\to a^+}f(x)=\infty limxa+f(x)= a a a 叫瑕点,此积分叫无界函数的反常积分。

2. 判别

①:要求每个积分有且仅有一个奇点;
②:尺度: { ∫ 0 1 1 x p d x { 0 < p < 1 时 收 敛 p ≥ 1 时 发 散 ∫ 1 + ∞ 1 x p d x { p > 1 时 收 敛 p ≤ 1 时 发 散 \left\{\begin{matrix} \int_{0}^{1}\frac{1}{x^p}dx\left\{\begin{matrix} 0<p<1时收敛 \\ p\ge1时发散 \end{matrix}\right. \\ \int_{1}^{+\infty}\frac{1}{x^p}dx\left\{\begin{matrix} p>1时收敛 \\ p\le1时发散 \end{matrix}\right. \end{matrix}\right. 01xp1dx{0<p<1p11+xp1dx{p>1p1

  • 1
    点赞
  • 7
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 2
    评论
《实变函数与泛函分析概要》是一本经典的数学教材,主要介绍了实变函数和泛函分析的基本内容。实变函数是研究实数域上的函数的性质和变换规律,而泛函分析是研究函数的空间以及作用在函数空间上的映射。 这本书首先介绍了实变函数的基本概念,包括实数的性质、数列的极限、函数的连续性、可测性等。然后详细讨论了一元实变函数的导数和积分,以及多元实变函数的偏导数和重积分。通过学习这些内容,读者可以更深入地理解和应用微积分的基本原理和方法。 在泛函分析的部分,书中介绍了线性空间和线性映射的基本理论,以及距离和内积空间的性质。随后,书中讨论了泛函的概念性质,包括线性泛函、连续性、极值等。最后,书中介绍了泛函分析中的重要定理,如Hahn-Banach定理、开映射定理、闭图像定理等。 通过阅读《实变函数与泛函分析概要》,读者可以系统地学习实变函数和泛函分析的基本知识,并掌握一些重要的定理和方法。这对于从事数学研究或应用数学的工作者来说是非常重要的,并且也为进一步学习更高级的数学理论打下了坚实的基础。此外,这本书还适用于高年级本科生和研究生的课程教学,可以作为重要的参考教材。总之,《实变函数与泛函分析概要》是一本经典而全面的数学教材,对于学习和理解实变函数和泛函分析的人来说是非常有价值的。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

BeZer0

打赏一杯奶茶支持一下作者吧~~

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值