【考研数学】二. 一元函数积分学

二. 一元函数积分学

1. 基本概念

微积分:一元函数微积分 和 多元函数微积分

不定积分:求所有的原函数,所以求得的原函数通常要加个常数C

定积分反常积分:若出现了∞或者闭区间内没有定义的点,且极限为无穷,就是反常积分,反之定积分。

2. 计算方法

不定积分的计算

常规套路:凑微分 , 换元 , 分部积分

  1. 公式法:善用17个 不定积分常见的等式 +12 三角函数公式变化(文末)

  2. 移动法:将dx左侧部分积到右侧(想想什么求导等于左侧)(也可以逆向)

  3. 分部积分法:适用于被积函数是两项相乘的形式(反对幂指三)

    • 不定积分udv = uv - 不定积分vdu
    • 优先级:指三幂对反。谁在前面移谁
    • 注意转化: lnx dx = lnx * lne dx = lnx * x的0次方 dx
    • 注意三角函数可能需要连续用两次建立方程。

在这里插入图片描述

对于需要多次使用分部积分的形式,可以参考表格分部法:表格分部法

  1. 凑分母法:把分子凑成和分母一样
  • 适用条件:
    • 被积函数是一个分数
    • 分母是两项相加减的形式
    • 分子是分母的其中一项
  1. 换元法

    • 适用条件:只要含根号,就可以用!
      在这里插入图片描述
      只要使用了方法五,开除根号后,必为正。
    • 若 x = sect ,还原后,不可使得t = arcsecx 代入最后结果(使得三角函数里面嵌套一个反三角函数)。需要自己在草稿上画一个三角形,自己去找关系。
  2. 万能公式法

    • 适用类型:被积函数中只含数字和三角函数。

    • 可以使用,但是不一定是最简单的方法。

    • 令t = tan x/2
      在这里插入图片描述1. 对分母求导法

    • 适用题型:
      D x + E A x 2 + B x + C \frac{Dx+E}{Ax^2+Bx+C} Ax2+Bx+CDx+E

    • 对分母求导,然后将分子改写成分母的导数,前面缺什么乘什么,后面缺什么加减什么。

定积分的计算

  • f(x)在[a,b]连续,则定积分存在
  • f(x)在[a,b]有界且有限个间断点,则定积分存在
  • 先计算对应的不定积分,然后代入积分的上限和下限并作差。

反常积分的计算

开区间中不存在 没定义的点 => 直接算
开区间中存在 没定义的点 => 分段

定积分的应用

这是一个分解dS或者dV的过程。

求面积 + 旋转轴体积,注意空壳的体积,实际上是两个实心的面积差。

定积分的求导

积分上限求导 * 代入被积函数 - 积分下限求导 *代入被积函数
在这里插入图片描述

3. 心得

  • 计算定积分时:换元必换上下限 !
  • 计算定积分时:若是计算曲面积分(曲线方程),可以将其近似看作是扇形,dS = 1/2 * 长度的平方 * 角度
  • 含绝对值的定积分和反常积分
    • 去绝对值前先判断是否需要分段
    • 可能需要分类讨论

4. 附录

4.1 三角函数公式

4.1.1 二倍角

在这里插入图片描述

4.1.2 和差化积

记住1,3,5.其他的都可以推

请添加图片描述

4.1.3 其他

在这里插入图片描述

4.2 经典积分公式

在这里插入图片描述
在这里插入图片描述
例题:
在这里插入图片描述
题解:
在这里插入图片描述

4.3 点火公式

遇到高阶的三角函数,对称的考虑奇偶性,不对称的考虑点火公式!

华里士公式(点火公式):

在这里插入图片描述

5. 二轮技巧(补充)

5.1 分式拆项:分母能因式分解,含一次式的高次幂

在这里插入图片描述

5.2 反余切函数的等价及导数

与arctanx的等价关系:
a r c t a n x + a r c c o t x = π 2 arctanx + arccotx = \frac{\pi}{2} arctanx+arccotx=2π
推导如下:
c o t y = t a n ( π 2 − y ) coty=tan(\frac{\pi}{2}-y) coty=tan(2πy)
令x = coty
∴ x = t a n ( π 2 − y ) ∴ x=tan(\frac{\pi}{2}-y) x=tan(2πy)

∴ a r c t a n x = π 2 − y = π 2 − a r c c o t x ∴ arctanx=\frac{\pi}{2}-y=\frac{\pi}{2}-arccotx arctanx=2πy=2πarccotx
∴ a r c t a n x + a r c c o t x = π 2 ∴ arctanx+arccotx=\frac{\pi}{2} arctanx+arccotx=2π

导数
( a r c c o t x ) ′ = − 1 1 + x 2 (arccot x)' = -\frac{1}{1+x^2} (arccotx)=1+x21
在这里插入图片描述

5.3 sec的积分

在这里插入图片描述

相似地,有cscx的积分:
在这里插入图片描述

5.4 cot、tanx 积分

在这里插入图片描述
同理,需要记住 下面两条等价积分:

  • tanx积分是ln|secx|+C
  • tanx的积分是-ln|cosx|+C

5.5 反常积分的敛散性

分析敛散性有两种情况,一种是区间无限的敛散,另外一种是无界的敛散。

在这里插入图片描述

在这里插入图片描述
在这里插入图片描述
B站参考视频:https://www.bilibili.com/video/BV1sr4y1Q7Np?p=2

5.6 因式分解的留数法

在这里插入图片描述

5.7 区间再现公式

在这里插入图片描述

  • 4
    点赞
  • 33
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 0
    评论
一元函数积分学中常考的凑微分法是一种通过巧妙的代换将被积函数转化成更易积分的形式的方法。具体来说,凑微分法常用于以下两种情况: 1. 被积函数中含有若干项的乘积,其中某些项的微分形式与整个被积函数相同或与其他项的微分形式相同,但是某些项的微分形式又与整个被积函数不同。此时,我们可以通过代换将这些微分形式相同或相似的项合并在一起,从而得到更易积分的形式。 例如,对于形如 $\int x\sqrt{1-x^2}\mathrm{d}x$ 的积分,我们可以令 $u=1-x^2$,则 $\mathrm{d}u=-2x\mathrm{d}x$,从而原积分可以转化为 $\int -\frac{1}{2}\sqrt{u}\mathrm{d}u$,最后再通过简单的换元即可求解。 2. 被积函数中含有若干项的和,其中某些项可以表示为其他项的导数形式。此时,我们可以通过分部积分将这些项分离出来,从而得到更易积分的形式。 例如,对于形如 $\int xe^x\mathrm{d}x$ 的积分,我们可以将其看作是 $\int x\mathrm{d}(e^x)$ 的形式,从而可以利用分部积分公式将其拆分为 $xe^x-\int e^x\mathrm{d}x$ 的形式,最后再通过简单的求导即可得到积分的结果。 需要注意的是,凑微分法虽然在某些情况下可以简化积分的过程,但是也存在一些风险。例如,如果代换不当或者分部积分的选择不合适,可能会导致积分结果的错误或者复杂度的增加。因此,在使用凑微分法时,需要仔细分析被积函数的形式,并且在实践中多加练习,才能熟练掌握这种技巧。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

如果皮卡会coding

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值