文章目录
二. 一元函数积分学
1. 基本概念
微积分:一元函数微积分 和 多元函数微积分
不定积分:求所有的原函数,所以求得的原函数通常要加个常数C
定积分和反常积分:若出现了∞或者闭区间内没有定义的点,且极限为无穷,就是反常积分,反之定积分。
2. 计算方法
不定积分的计算
常规套路:凑微分 , 换元 , 分部积分
-
公式法:善用17个 不定积分常见的等式 +12 三角函数公式变化(文末)
-
移动法:将dx左侧部分积到右侧(想想什么求导等于左侧)(也可以逆向)
-
分部积分法:适用于被积函数是两项相乘的形式(反对幂指三)
- 不定积分udv = uv - 不定积分vdu
- 优先级:指三幂对反。谁在前面移谁
- 注意转化: lnx dx = lnx * lne dx = lnx * x的0次方 dx
- 注意三角函数可能需要连续用两次建立方程。
对于需要多次使用分部积分的形式,可以参考表格分部法:表格分部法
- 凑分母法:把分子凑成和分母一样
- 适用条件:
- 被积函数是一个分数
- 分母是两项相加减的形式
- 分子是分母的其中一项
-
换元法
- 适用条件:只要含根号,就可以用!
只要使用了方法五,开除根号后,必为正。 - 若 x = sect ,还原后,不可使得t = arcsecx 代入最后结果(使得三角函数里面嵌套一个反三角函数)。需要自己在草稿上画一个三角形,自己去找关系。
- 适用条件:只要含根号,就可以用!
-
万能公式法
-
适用类型:被积函数中只含数字和三角函数。
-
可以使用,但是不一定是最简单的方法。
-
令t = tan x/2
1. 对分母求导法
-
适用题型:
D x + E A x 2 + B x + C \frac{Dx+E}{Ax^2+Bx+C} Ax2+Bx+CDx+E -
对分母求导,然后将分子改写成分母的导数,前面缺什么乘什么,后面缺什么加减什么。
-
定积分的计算
- f(x)在[a,b]连续,则定积分存在
- f(x)在[a,b]有界且有限个间断点,则定积分存在
- 先计算对应的不定积分,然后代入积分的上限和下限并作差。
反常积分的计算
开区间中不存在 没定义的点 => 直接算
开区间中存在 没定义的点 => 分段
定积分的应用
这是一个分解dS或者dV的过程。
求面积 + 旋转轴体积,注意空壳的体积,实际上是两个实心的面积差。
定积分的求导
积分上限求导 * 代入被积函数 - 积分下限求导 *代入被积函数
3. 心得
- 计算定积分时:换元必换上下限 !
- 计算定积分时:若是计算曲面积分(曲线方程),可以将其近似看作是扇形,dS = 1/2 * 长度的平方 * 角度
- 求含绝对值的定积分和反常积分
- 去绝对值前先判断是否需要分段
- 可能需要分类讨论
4. 附录
4.1 三角函数公式
4.1.1 二倍角
4.1.2 和差化积
记住1,3,5.其他的都可以推
4.1.3 其他
4.2 经典积分公式
例题:
题解:
4.3 点火公式
遇到高阶的三角函数,对称的考虑奇偶性,不对称的考虑点火公式!
华里士公式(点火公式):
5. 二轮技巧(补充)
5.1 分式拆项:分母能因式分解,含一次式的高次幂
5.2 反余切函数的等价及导数
与arctanx的等价关系:
a
r
c
t
a
n
x
+
a
r
c
c
o
t
x
=
π
2
arctanx + arccotx = \frac{\pi}{2}
arctanx+arccotx=2π
推导如下:
c
o
t
y
=
t
a
n
(
π
2
−
y
)
coty=tan(\frac{\pi}{2}-y)
coty=tan(2π−y)
令x = coty
∴
x
=
t
a
n
(
π
2
−
y
)
∴ x=tan(\frac{\pi}{2}-y)
∴x=tan(2π−y)
∴
a
r
c
t
a
n
x
=
π
2
−
y
=
π
2
−
a
r
c
c
o
t
x
∴ arctanx=\frac{\pi}{2}-y=\frac{\pi}{2}-arccotx
∴arctanx=2π−y=2π−arccotx
∴
a
r
c
t
a
n
x
+
a
r
c
c
o
t
x
=
π
2
∴ arctanx+arccotx=\frac{\pi}{2}
∴arctanx+arccotx=2π
导数:
(
a
r
c
c
o
t
x
)
′
=
−
1
1
+
x
2
(arccot x)' = -\frac{1}{1+x^2}
(arccotx)′=−1+x21
5.3 sec的积分
相似地,有cscx的积分:
5.4 cot、tanx 积分
同理,需要记住 下面两条等价积分:
- tanx积分是ln|secx|+C
- tanx的积分是-ln|cosx|+C
5.5 反常积分的敛散性
分析敛散性有两种情况,一种是区间无限的敛散,另外一种是无界的敛散。
B站参考视频:https://www.bilibili.com/video/BV1sr4y1Q7Np?p=2