【高等数学】三.一元函数积分学

一元函数积分学

一、概念和性质

1. 函数积分、原型和导数祖孙三代

存在可导函数F(x)对于区间上的任意一点都有 F ′ ( x ) = f ( x ) F'(x) = f(x) F(x)=f(x)成立,则称F(x)是f(x)在区间 I I I上对一个原函数,称 ∫ f ( x ) d x \int_{}f(x)dx f(x)dx为F(x)的不定积分,可知:

原函数必定在区间内每一点都有定义,并且是连续的
可以看出,当一个函数闭区间连续的时候,除了可以推出函数有界,还可以推出函数有原函数

TIP:部分原函数存在但是无法用初等函数表示的积分:
三角函数型: ∫ c o s x x n d x 、 ∫ s i n x x n d x 、 ∫ t a n x x n d x 、 ∫ t a n x 2 d x \int\frac {cosx}{x^n}dx、 \int\frac {sinx}{x^n}dx、 \int\frac {tanx}{x^n}dx、 \int tanx^2dx xncosxdxxnsinxdxxntanxdxtanx2dx
高斯积分型: ∫ e a x 2 d x 、 ∫ x 2 n e a x 2 d x 、 ∫ e x x d x \int e^{ax^2}dx 、\int x^{2n} e^{ax^2}dx、 \int\frac {e^x}{x}dx eax2dxx2neax2dxxexdx

祖孙三代的关系:

  • f(x)和f’(x)的奇偶性相反
  • f(x)为周期函数,则f’(x)也是周期函数,而且周期相同
  • f(x)为奇函数 ⇒ \Rightarrow ∫ 0 x f ( x ) d x \int_{0}^{x}f(x)dx 0xf(x)dx为偶函数, ∫ a x f ( x ) d x \int_{a}^{x}f(x)dx axf(x)dx为偶函数
  • f(x)为偶函数 ⇒ \Rightarrow ∫ 0 x f ( x ) d x \int_{0}^{x}f(x)dx 0xf(x)dx为奇函数, ∫ a x f ( x ) d x \int_{a}^{x}f(x)dx axf(x)dx不确定
    在这里插入图片描述

TIPS:

  • 函数连续不一定可导,但是函数可导必然连续
  • 函数的导函数在闭区间可导,则函数的导函数必然有界

2. 积分比大小

1.用几何意义——看面积大小
2.用保号性——看正负或者做差

3. 定积分的精确定义

遇到和式,首先判断是否能提取 1 n \frac{1}{n} n1 :如果可以则使用定积分精确定义;否则再考虑夹逼准则。

4.原函数/定积分存在性判别

使用定积分和原函数存在性定理,一定要注意区分两个定理的异同!

5. 反常积分敛散性判别

反常积分分为无穷区间的反常积分无界函数的反常积分,其中 l i m x → a f ( x ) = ∞ lim_{x\to a}f(x)=\infty limxaf(x)=,则a称为暇点,暇点和-∞和+∞情况统称为奇点。

  • 使用反常积分的概念进行判别
  • 使用 ∫ 1 + ∞ 1 x p \int_{1}^{+\infty}\frac{1}{x^p} 1+xp1 ∫ 0 1 1 x p \int_{0}^{1}\frac{1}{x^p} 01xp1进行无穷大和无穷小比阶

两个重要结论:

  • 无穷区间的反常积分 ∫ 1 + ∞ d x x p \int_{1}^{+\infty}\frac{dx}{x^p} 1+xpdx在p>1时收敛,在p<=1时发散
  • 无界函数的反常积分 ∫ 0 1 d x x p \int_{0}^{1}\frac{dx}{x^p} 01xpdx在0<p<1时收敛,在p>=1时发散
  • 特殊结论:
    ∫ 2 + ∞ 1 x l n p x d x { p > 1 , 收 敛 p ≤ 1 , 发 散 \int_{2}^{+\infty}\frac{1}{xln^pxdx} \left\{ \begin{aligned} p>1 & , & 收敛 \\ p\leq1 & , & 发散 \\ \end{aligned} \right. 2+xlnpxdx1{p>1p1,

二、不定积分计算

1.定积分计算的几大基本方法

  • 基本积分计算
  • 凑微分法
  • 换元法:
    i.三角函数代换
    ii.恒等变形后作三角代换
    iii.根式代换
    iv.倒代换
    v.复杂函数直接代换
  • 分部积分法
    i.能够使用分部积分的情形:反对幂指三
    ii.分部积分一般会和根式代换还有复杂函数代换一同使用
  • 有理函数积分法
    i.简单的有理函数函数积分:有的有理函数积分可以直接凑出来,不需要走流程,甚至走流程及其慢,但是直接凑更快(比如660 P21 55)
    ii.有理函数积分求解未知数时,可以使用代入关键值的方法提高速度

计算方法优先级对比(纯个人理解,觉得不对请跳过):

方法
根式代换、复杂函数代换、倒代换
分步积分法
三角代换、凑微分、换元、有理函数积分
基本积分公式、 三角运算变换

换元总结为:三角函数可代换,遇到分数可倒带,复杂函数直接换,带有根号整个换。换元需要多次尝试可能才会找到方法。

2.解题注意事项

  • 需要牢记,在积分的dx部分可以进行进行常数增减,也就是 ∫ f ( x ) d x = ∫ f ( x ) d ( x + C ) \int f(x)dx=\int f(x)d(x+C) f(x)dx=f(x)d(x+C),在使用分部积分的时候,可以为分部积分争取一些灵活性

  • 对于积分式内较为复杂的部分,有两种解决办法:

    1. 换元
    2. 对复杂部分求导,可以比较易于看出其需要凑微分的形式,比如: ∫ 2 x + 3 x 2 − x + 1 d x \int\frac{2x+3}{x^2-x+1}dx x2x+12x+3dx对其 x 2 − x + 1 x^2-x+1 x2x+1求导后得出 2 x − 1 2x-1 2x1,易于看出求解方式为将分子拆分为 2 x − 1 2x-1 2x1 4 4 4进行求解。总的来说,在被积函数f(x)g(x)中,如果出现f’(x)=Ag(x),则有 I = ∫ f ( x ) g ( x ) d x = ∫ f ( x ) A g ( x ) d x = 1 A ∫ f ( x ) d [ f ( x ) ] I=\int f(x)g(x)dx=\int f(x)Ag(x)dx =\frac{1}{A}\int f(x)d[f(x)] I=f(x)g(x)dx=f(x)Ag(x)dx=A1f(x)d[f(x)]
  • 某些函数(比如 ∫ e x s i n x d x \int_{}{}e^xsinxdx exsinxdx)在若干次分部积分后会回到原式形式

  • 分步积分法可以推出一些递推关系

  • 复杂函数直接代换一般用于含有ax,ex,ln x, arcsin x, arctan x等式子中

  • 如果被积函数分母已经无法进行因式分解,则一般不适用于有理函数积分

  • 遇到复杂函数的时候,需要灵活使用中值定理中的辅助函数法,比如例9.5

  • 通用的变换:和差化积、

三、定积分计算

1.计算方法

  • 牛顿莱布尼兹公式
  • 定积分精确定义
  • 定积分换元法
  • 定积分分布积分法
  • 定积分计算常用结论
  • 点火公式
  • 区间再现公式(三种形式都要会)
    • 区间再现公式一般用于 ∫ a b f ( x ) + f ( a + b − x ) d x \int_{a}^bf(x)+f(a+b-x)dx abf(x)+f(a+bx)dx方便求解时使用
    • 对称性:若 F ( x ) = f ( x ) + f ( a + b − x ) = F ( a + b − x ) F(x)=f(x)+f(a+b-x)=F(a+b-x) F(x)=f(x)+f(a+bx)=F(a+bx),则F(x)关于
      x = a + b 2 x=\frac{a+b}{2} x=2a+b对称。
    • ∫ a b f ( x ) d x = ∫ a a + b 2 [ f ( x ) + f ( a + b − x ) ] d x \int_a^b f(x)dx = \int_a^{\frac{a+b}{2}} [f(x)+f(a+b-x)]dx abf(x)dx=a2a+b[f(x)+f(a+bx)]dx
    • ∫ − a a f ( x ) d x = ∫ 0 a f ( x ) + f ( − x ) d x \int_{-a}^{a}f(x)dx=\int_0^af(x)+f(-x)dx aaf(x)dx=0af(x)+f(x)dx,在f(x)和f(-x)均不方便积分,但是f(x)+f(-x)方便积分时使用。和区间再现相比,是区间对称情况下的区间再现
  • 区间简化公式
    在积分 ∫ a b f ( x ) d x \int_a^bf(x)dx abf(x)dx
    • x − a + b 2 = b − a 2 s i n t x-\frac{a+b}{2}=\frac{b-a}{2}sint x2a+b=2basint
    • a − x = ( b − a ) t a-x=(b-a)t ax=(ba)t

计算方式优先级:

方法
根式代换、复杂函数代换、倒代换、区间再现区间简化对称性
分步积分法
三角代换、凑微分、换元
基本积分公式、 三角运算变换、点火公式

2.解题注意事项:

  • 诸如 ∫ a b f ( x ) s i n x + c o s x d x \int_a^b\frac{f(x)}{sinx+cosx}dx absinx+cosxf(x)dx在进行 t = x − π 2 t=x-\frac{\pi}{2} t=x2π的换元后,分母不变,因此可以将换元前后的进行相加
  • 对于递推式,应该先判断其是否适用于夹逼定理,如果夹逼准则失效,则使用定积分精确定义进行推导
  • 对于定积分,还需考虑他的区间是否是对称的,从而方便简化计算。尤其是对于 n x + x 2 \sqrt {nx+x^2} nx+x2 的可以采用对称性
  • 定积分的一些基本性质:
    • ∫ 0 π 2 s i n n x d x = ∫ 0 π 2 c o s n x d x = 点 火 \int_0^{\frac{\pi}{2}} sin^nxdx=\int_0^{\frac{\pi}{2}} cos^nxdx=点火 02πsinnxdx=02πcosnxdx=
    • ∫ 0 π s i n n x d x = 2 ∫ 0 π 2 s i n n x d x \int_0^{\pi} sin^nxdx=2\int_0^{\frac{\pi}{2}} sin^nxdx 0πsinnxdx=202πsinnxdx
      ∫ 0 π c o s n x d x = { 0 , n = 正 奇 数 2 ∫ 0 π 2 c o s n x d x , n = 正 偶 数 \int_0^{\pi} cos^nxdx=\left\{ \begin{aligned} 0 & , & n=正奇数 \\ 2\int_0^{\frac{\pi}{2}} cos^nxdx & , & n=正偶数 \\ \end{aligned} \right. 0πcosnxdx=0202πcosnxdx,n=n=
    • ∫ 0 2 π s i n n x d x = ∫ 0 2 π c o s n x d x = { 0 , n = 正 奇 数 4 ∫ 0 π 2 s i n n x d x , n = 正 偶 数 \int_0^{2\pi} sin^nxdx=\int_0^{2\pi} cos^nxdx=\left\{ \begin{aligned} 0 & , & n=正奇数 \\ 4\int_0^{\frac{\pi}{2}} sin^nxdx & , & n=正偶数 \\ \end{aligned} \right. 02πsinnxdx=02πcosnxdx=0402πsinnxdx,n=n=
    • ∫ 0 π x f ( s i n x ) d x = π 2 ∫ 0 π f ( s i n x ) d x \int_0^\pi xf(sinx)dx=\frac{\pi}{2}\int_0^\pi f(sin x)dx 0πxf(sinx)dx=2π0πf(sinx)dx
    • ∫ 0 π x f ( s i n x ) d x = π ∫ 0 π 2 f ( s i n x ) d x \int_0^\pi xf(sinx)dx=\pi\int_0^{\frac {\pi}{2}} f(sin x)dx 0πxf(sinx)dx=π02πf(sinx)dx
    • ∫ 0 π 2 f ( s i n x ) d x = ∫ 0 π 2 f ( c o s x ) d x \int_0^{\frac{\pi}{2}} f(sinx)dx=\int_0^{\frac{\pi}{2}} f(cosx)dx 02πf(sinx)dx=02πf(cosx)dx
    • ∫ 0 π 2 f ( s i n x , c o s x ) d x = ∫ 0 π 2 f ( c o s x , s i n x ) d x \int_0^{\frac{\pi}{2}} f(sinx,cosx)dx=\int_0^{\frac{\pi}{2}} f(cosx,sinx)dx 02πf(sinx,cosx)dx=02πf(cosx,sinx)dx
  • 定积分中的特殊值:
    • ∫ 0 a 1 1 − e x + 1 1 − e − 1 d x = ∫ 0 a 1 d x \int_0^a \frac{1}{1-e^x}+\frac{1}{1-e^{-1}}dx=\int_0^a 1dx 0a1ex1+1e11dx=0a1dx

3. 题型

  1. 对称性下的积分问题
  2. 定积分分部积分法中的升阶和降阶(必考):根据已知决定u和v
  3. 如果题目内有多个未知数,而积分仅有一个未知数,比如 ∫ a b f ( x t ) d t \int_a^bf(xt)dt abf(xt)dt,那么可以将该定积分转化成变限积分计算,张宇强化10.19



四、变限积分的计算

1.分段函数的变限积分

2. 直接求导型

[ ∫ a g ( x ) f ( t ) d t ] ′ = f [ g ( x ) ] ∗ g ′ ( x ) [\int_a^{g(x)}f(t)dt]' = f[g(x)]*g'(x) [ag(x)f(t)dt]=f[g(x)]g(x)

3.换元求导型

4.拆分求导型

需要先拆分区间化成若干个积分,有两种情况:

  1. 求导比那里那个和积分变量在同一范围,例9.37
  2. 求导变量和积分变量在不同范围



五、积分的几何应用

1.面积

  • 直角坐标系下的面积公式为 S = ∫ a b ∣ f ( x ) − g ( x ) ∣ d x S=\int_a^b|f(x)-g(x)|dx S=abf(x)g(x)dx
  • 极坐标系下的面积公式为 ∫ α β 1 2 ∣ r 2 2 ( θ ) − r 1 2 ( θ ) ∣ d θ \int_\alpha^\beta \frac{1}{2}|r^2_2(\theta)-r^2_1(\theta)|d\theta αβ21r22(θ)r12(θ)dθ

2.体积

绕x轴: V x = ∫ a b π y 2 ( x ) d x V_x=\int_a^b \pi y^2(x)dx Vx=abπy2(x)dx
绕y轴: V y = ∫ a b 2 π x ∣ y ( x ) ∣ d x V_y=\int_a^b 2\pi x|y(x)|dx Vy=ab2πxy(x)dx(柱壳法)

做图
  • 已知曲线:直接画图
  • 未知曲线:
    • 描点
    • 图形变换
    • 导数工具:一阶定单调,二阶定凹凸
    • 极坐标下:极直互化
    • 参数方程:化为极坐标系或直角系
参数方程

参数方程换元法:
写出正常基于x的积分方程 ∫ 0 k f ( x ) d x \int_0^kf(x)dx 0kf(x)dx,然后将 x = g ( t ) x=g(t) x=g(t)代入其中,使其变成 ∫ 0 k ( t ) f ( x ( t ) ) d x ( t ) \int_0^{k(t)}f(x(t))dx(t) 0k(t)f(x(t))dx(t)

3.平面曲线弧长

直角坐标系: s = ∫ a b 1 + [ y ′ ( x ) ] 2 d x s=\int_a^b\sqrt{1+[y'(x)]^2}dx s=ab1+[y(x)]2 dx
参数方程: s = ∫ α β [ x ′ ( t ) ] 2 + [ y ′ ( t ) ] 2 d t s=\int_\alpha^\beta\sqrt{[x'(t)]^2+[y'(t)]^2}dt s=αβ[x(t)]2+[y(t)]2 dt
极坐标系: s = ∫ α β [ r ( θ ) ] 2 + [ r ′ ( θ ) ] 2 d θ s=\int_\alpha^\beta\sqrt{[r(\theta)]^2+[r'(\theta)]^2}d\theta s=αβ[r(θ)]2+[r(θ)]2 dθ

4.旋转曲面面积和体积

旋转曲面体积
绕x轴旋转 ∫ b a π y 2 ( x ) d x \int_{b}^{a} \pi y^2(x)dx baπy2(x)dx
绕y轴旋转(柱壳法) ∫ b a 2 π x y ( x ) d x \int_{b}^{a} 2\pi x y(x)dx ba2πxy(x)dx

旋转曲面面积
直角坐标系f(x)绕x轴旋转一圈:
S = 2 π ∫ a b ∣ y ( x ) ∣ 1 + [ y ′ ( x ) ] 2 d x S=2\pi\int_a^b|y(x)|\sqrt{1+[y'(x)]^2}dx S=2πaby(x)1+[y(x)]2 dx
参数方程x(t)y(t)绕x轴旋转一圈
S = 2 π ∫ a b ∣ y ( t ) ∣ [ x ′ ( t ) ] 2 + [ y ′ ( t ) ] 2 d t S=2\pi\int_a^b|y(t)|\sqrt{[x'(t)]^2+[y'(t)]^2}dt S=2πaby(t)[x(t)]2+[y(t)]2 dt

后面的 [ x ′ ( t ) ] 2 + [ y ′ ( t ) ] 2 \sqrt{[x'(t)]^2+[y'(t)]^2} [x(t)]2+[y(t)]2 为弧长,因为直接取直线误差太大

5.平面曲边梯形形心公式

质量均匀的平面薄片的质心就是形心
x ‾ = ∣ ∬ D x d θ ∬ D d θ ∣ = ∣ ∫ a b x f ( x ) d x ∫ a b f ( x ) d x ∣ \overline x=|\frac{\iint_{D}xd\theta}{\iint_{D}d\theta}|=|\frac{\int_a^bxf(x)dx}{\int_a^bf(x)dx}| x=DdθDxdθ=abf(x)dxabxf(x)dx
y ‾ = ∣ ∬ D y d θ ∬ D d θ ∣ = ∣ 1 2 ∫ a b f ( x ) 2 d x ∫ a b f ( x ) d x ∣ \overline y=|\frac{\iint_{D}yd\theta}{\iint_{D}d\theta}|=|\frac{\frac{1}{2}\int_a^bf(x)^2dx}{\int_a^bf(x)dx}| y=DdθDydθ=abf(x)dx21abf(x)2dx

平行截面面积

V = ∫ a b S ( x ) d x V = \int_a^b S(x)dx V=abS(x)dx

六、积分等式和积分不等式

1.积分等式

对积分 ∫ a b f ( x ) d x \int _a^bf(x)dx abf(x)dx,一般采用两种思路:1.用积分中值定理处理为 f ( h ) ( b − a ) f(h)(b-a) f(h)(ba);2.作辅助函数 ∫ a x f ( t ) d t \int_a^xf(t)dt axf(t)dt
需要着重注意使用定积分函数化
方法:

  1. 常用积分等式
  2. 通过证明某特殊积分等式求特殊积分
  3. 积分中值定理

2.积分不等式

综合性强,需要着重注意使用定积分函数化
方法:

  1. 函数单调性
  2. 处理被积函数
    • 积分保号性: f ( x ) > g ( x ) → ∫ f ( x ) d x > ∫ g ( x ) d x f(x)>g(x)\to \int f(x)dx>\int g(x)dx f(x)>g(x)f(x)dx>g(x)dx
    • 拉格朗日中值定理:一阶可导,并且题中有较为简单的函数值
  3. 泰勒公式:题目中有二阶以及更高的阶数,并且有简单的函数值
  4. 放缩法:
  5. 分部积分法
  6. 换元法

附:常见不等式
∣ s i n x ∣ < 1 、 s i n x < x 、 a b ≤ a + b 2 ≤ a 2 + b 2 2 |sinx|<1、sinx<x、\sqrt{ab} \leq\frac{a+b}2\leq \sqrt\frac{a^2+b^2}2 sinx<1sinx<xab 2a+b2a2+b2

  • 0
    点赞
  • 5
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值